• 제목/요약/키워드: Golgi localization

검색결과 20건 처리시간 0.02초

Subcellular Localization of Diacylglycerol-responsive Protein Kinase C Isoforms in HeLa Cells

  • Kazi, Julhash U.;Kim, Cho-Rong;Soh, Jae-Won
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권9호
    • /
    • pp.1981-1984
    • /
    • 2009
  • Subcellular localization of protein kinase often plays an important role in determining its activity and specificity. Protein kinase C (PKC), a family of multi-gene protein kinases has long been known to be translocated to the particular cellular compartments in response to DAG or its analog phorbol esters. We used C-terminal green fluorescent protein (GFP) fusion proteins of PKC isoforms to visualize the subcellular distribution of individual PKC isoforms. Intracellular localization of PKC-GFP proteins was monitored by fluorescence microscopy after transient transfection of PKC-GFP expression vectors in the HeLa cells. In unstimulated HeLa cells, all PKC isoforms were found to be distributed throughout the cytoplasm with a few exceptions. PKC$\theta$ was mostly localized to the Golgi, and PKC$\gamma$, PKC$\delta$ and PKC$\eta$ showed cytoplasmic distribution with Golgi localization. DAG analog TPA induced translocation of PKC-GFP to the plasma membrane. PKC$\alpha$, PKC$\eta$ and PKC$\theta$ were also localized to the Golgi in response to TPA. Only PKC$\delta$ was found to be associated with the nuclear membrane after transient TPA treatment. These results suggest that specific PKC isoforms are translocated to different intracellular sites and exhibit distinct biological effects.

Actin Cytoskeleton and Golgi Involvement in Barley stripe mosaic virus Movement and Cell Wall Localization of Triple Gene Block Proteins

  • Lim, Hyoun-Sub;Lee, Mi Yeon;Moon, Jae Sun;Moon, Jung-Kyung;Yu, Yong-Man;Cho, In Sook;Bae, Hanhong;DeBoer, Matt;Ju, Hojong;Hammond, John;Jackson, Andrew O.
    • The Plant Pathology Journal
    • /
    • 제29권1호
    • /
    • pp.17-30
    • /
    • 2013
  • Barley stripe mosaic virus (BSMV) induces massive actin filament thickening at the infection front of infected Nicotiana benthamiana leaves. To determine the mechanisms leading to actin remodeling, fluorescent protein fusions of the BSMV triple gene block (TGB) proteins were coexpressed in cells with the actin marker DsRed: Talin. TGB ectopic expression experiments revealed that TGB3 is a major elicitor of filament thickening, that TGB2 resulted in formation of intermediate DsRed:Talin filaments, and that TGB1 alone had no obvious effects on actin filament structure. Latrunculin B (LatB) treat-ments retarded BSMV cell-to-cell movement, disrupted actin filament organization, and dramatically decreased the proportion of paired TGB3 foci appearing at the cell wall (CW). BSMV infection of transgenic plants tagged with GFP-KDEL exhibited membrane proliferation and vesicle formation that were especially evident around the nucleus. Similar membrane proliferation occurred in plants expressing TGB2 and/or TGB3, and DsRed: Talin fluorescence in these plants colocalized with the ER vesicles. TGB3 also associated with the Golgi apparatus and overlapped with cortical vesicles appearing at the cell periphery. Brefeldin A treatments disrupted Golgi and also altered vesicles at the CW, but failed to interfere with TGB CW localization. Our results indicate that actin cytoskeleton interactions are important in BSMV cell-to-cell movement and for CW localization of TGB3.

ApPDE4 long-form의 N-말단 돌연변이체들의 세포내타기팅과 타기팅 기전 분석 (Analysis of molecular mechanism of cellular localization of various N-terminal mutants of Aplysia PDE4 in HEK293T cells)

  • 엄수민;전용우;김건형;이진아;장덕진
    • 분석과학
    • /
    • 제29권1호
    • /
    • pp.10-18
    • /
    • 2016
  • Phosphodiesterase(PDE)는 세포내에서 cAMP를 분해하는 효소로 세포의 신호 전달에 중요한 기능을 수행하는 것으로 알려져 왔다. 이전의 연구를 통해 군소에서 클로닝된 PDE4 long-form의 N-말단에 위치하는 16개 아미노산만으로 충분히 원형질막에 타기팅됨을 알 수 있었다. 본 연구에서는 ApPDE4의 N-말단 16개(L(N16))를 주형으로 해서 9-11번째와 15번째 아미노산들(RHW-C)을 무작위적으로 아마노산에 돌연변이를 주어서 세포내 타기팅에 미치는 영향을 분석해 보았다. 본 연구를 통해 원형질막과 골지체로 타기팅되는 돌연변이체들과 골지체로만 타기팅되는 돌연변이체들과, 소포체와 골지체로 동시에 타기팅되는 돌연변이체들과, 세포질에만 위치하는 돌연변이체들을 얻을 수 있었다. 또한, 이러한 타기팅에 palmitoylation이 영향을 주는지 확인하기 위해 palmitoylation 억제제인 2-BR을 처리해보니 대부분의 돌연변이체에서 원형질막 타기팅이 사라지는 것을 확인하였다. 이를통해 palmitoylation이 ApPDE4 돌연변이체들의 원형질막 타기팅에 중요하다는 사실을 확인할 수 있었다. 또한, 이들 돌연변이체들중 골지체로만 타기팅되는 L(N16,C3S/VV/G)-mRFP와 L(N16,C3S/LFS/R)-mRFP와 L(N16,EPL/R)-mRFP들의 경우는 골지체 타기팅에 인지질 중에 하나인 PI4P가 중요한 역할을 하는 것을 알 수 있었다.

The Roles of the SNARE Protein Sed5 in Autophagy in Saccharomyces cerevisiae

  • Zou, Shenshen;Sun, Dan;Liang, Yongheng
    • Molecules and Cells
    • /
    • 제40권9호
    • /
    • pp.643-654
    • /
    • 2017
  • Autophagy is a degradation pathway in eukaryotic cells in which aging proteins and organelles are sequestered into double-membrane vesicles, termed autophagosomes, which fuse with vacuoles to hydrolyze cargo. The key step in autophagy is the formation of autophagosomes, which requires different kinds of vesicles, including COPII vesicles and Atg9-containing vesicles, to transport lipid double-membranes to the phagophore assembly site (PAS). In yeast, the cis-Golgi localized t-SNARE protein Sed5 plays a role in endoplasmic reticulum (ER)-Golgi and intra-Golgi vesicular transport. We report that during autophagy, sed5-1 mutant cells could not properly transport Atg8 to the PAS, resulting in multiple Atg8 dots being dispersed into the cytoplasm. Some dots were trapped in the Golgi apparatus. Sed5 regulates the anterograde trafficking of Atg9-containing vesicles to the PAS by participating in the localization of Atg23 and Atg27 to the Golgi apparatus. Furthermore, we found that overexpression of SFT1 or SFT2 (suppressor of sed5 ts) rescued the autophagy defects in sed5-1 mutant cells. Our data suggest that Sed5 plays a novel role in autophagy, by regulating the formation of Atg9-containing vesicles in the Golgi apparatus, and the genetic interaction between Sft1/2 and Sed5 is essential for autophagy.

Physiological Functions of the COPI Complex in Higher Plants

  • Ahn, Hee-Kyung;Kang, Yong Won;Lim, Hye Min;Hwang, Inhwan;Pai, Hyun-Sook
    • Molecules and Cells
    • /
    • 제38권10호
    • /
    • pp.866-875
    • /
    • 2015
  • COPI vesicles are essential to the retrograde transport of proteins in the early secretory pathway. The COPI coatomer complex consists of seven subunits, termed ${\alpha}-$, ${\beta}-$, ${\beta}^{\prime}-$, ${\gamma}-$, ${\delta}-$, ${\varepsilon}-$, and ${\zeta}$-COP, in yeast and mammals. Plant genomes have homologs of these subunits, but the essentiality of their cellular functions has hampered the functional characterization of the subunit genes in plants. Here we have employed virus-induced gene silencing (VIGS) and dexamethasone (DEX)-inducible RNAi of the COPI subunit genes to study the in vivo functions of the COPI coatomer complex in plants. The ${\beta}^{\prime}-$, ${\gamma}-$, and ${\delta}$-COP subunits localized to the Golgi as GFP-fusion proteins and interacted with each other in the Golgi. Silencing of ${\beta}^{\prime}-$, ${\gamma}-$, and ${\delta}$-COP by VIGS resulted in growth arrest and acute plant death in Nicotiana benthamiana, with the affected leaf cells exhibiting morphological markers of programmed cell death. Depletion of the COPI subunits resulted in disruption of the Golgi structure and accumulation of autolysosome-like structures in earlier stages of gene silencing. In tobacco BY-2 cells, DEX-inducible RNAi of ${\beta}^{\prime}$-COP caused aberrant cell plate formation during cytokinesis. Collectively, these results suggest that COPI vesicles are essential to plant growth and survival by maintaining the Golgi apparatus and modulating cell plate formation.

인삼(Panax ginseng C.A. Meyer) 배유세포내 Vicilin의 면역세포화학적 분포 (Immunocytochemical Localization of Vicilin in Endosperm Cells of Panax ginseng C.A. Meyer)

  • 이창섭
    • Journal of Plant Biology
    • /
    • 제35권2호
    • /
    • pp.99-106
    • /
    • 1992
  • 인삼(Panax ginseng C.A. Meyer) 종자단백질인 vicilin을 ammonium sulfate 침전, gel permeation 및 이온 교환 크로마토그래피로 정제하였다. Vicilin은 분자량 55,000(큰 소단위) 및 44,000(작은 소단위)인 두 종의 소단위를 포함하는 당단백질이다. Vicilin에 대한 항체를 토끼에서 형성시켜 DEAE-Affi-Gel Blue affinity 크로마토그래피로 정제하였다. 이 항체와 금 입자가 결합된 2차 항체를 종자의 배유세포에 반응시켰다. 금 입자는 배유세포내의 단백질체, 전자밀도가 높은 과립 및 골지체의 elaborating 과립에 표지되었다. 이러한 결과는 조면소포체에서 합성되어 골지체로 수송된 vicilin이 골지의 소포내에서 공정과정을 거쳐 전자밀도가 높은 과립이 된 다음 단백질로 수송됨을 나타낸다.

  • PDF

Visualization of Multicolored in vivo Organelle Markers for Co-Localization Studies in Oryza sativa

  • Dangol, Sarmina;Singh, Raksha;Chen, Yafei;Jwa, Nam-Soo
    • Molecules and Cells
    • /
    • 제40권11호
    • /
    • pp.828-836
    • /
    • 2017
  • Eukaryotic cells consist of a complex network of thousands of proteins present in different organelles where organelle-specific cellular processes occur. Identification of the subcellular localization of a protein is important for understanding its potential biochemical functions. In the post-genomic era, localization of unknown proteins is achieved using multiple tools including a fluorescent-tagged protein approach. Several fluorescent-tagged protein organelle markers have been introduced into dicot plants, but its use is still limited in monocot plants. Here, we generated a set of multicolored organelle markers (fluorescent-tagged proteins) based on well-established targeting sequences. We used a series of pGWBs binary vectors to ameliorate localization and co-localization experiments using monocot plants. We constructed different fluorescent-tagged markers to visualize rice cell organelles, i.e., nucleus, plastids, mitochondria, peroxisomes, golgi body, endoplasmic reticulum, plasma membrane, and tonoplast, with four different fluorescent proteins (FPs) (G3GFP, mRFP, YFP, and CFP). Visualization of FP-tagged markers in their respective compartments has been reported for dicot and monocot plants. The comparative localization of the nucleus marker with a nucleus localizing sequence, and the similar, characteristic morphology of mCherry-tagged Arabidopsis organelle markers and our generated organelle markers in onion cells, provide further evidence for the correct subcellular localization of the Oryza sativa (rice) organelle marker. The set of eight different rice organelle markers with four different FPs provides a valuable resource for determining the subcellular localization of newly identified proteins, conducting co-localization assays, and generating stable transgenic localization in monocot plants.

Phenylarsine oxide와 adenosine에 민감한 sulfatide 결합 펩타이드의 trans-golgi network 타기팅 (Phenylarsine Oxide and Adenosine-sensitive Trans-golgi Complex Targeting of GFP Fused to Modified Sulfatide-binding Peptide)

  • 전용우;이진아;장덕진
    • 생명과학회지
    • /
    • 제28권2호
    • /
    • pp.162-169
    • /
    • 2018
  • 세포기질에 존재하는 많은 종류의 단백질들은 N-말단에 존재하는 짧은 펩타이드들에 의해서 trans-golgi network(TGN)의 세포질쪽 막에 타기팅될때 중요한 역할을 수행한다고 보고되고 있다. 본 연구실에서도 이전에 바다달팽이인 군소에서 클로닝된 phosphodiesterase 4의 long-form의 경우 N-말단에 존재하는 20개의 아미노산 서열만으로도 충분히 HEK293T세포의 TGN의 세포질막에 타기팅 되게 하며, 이 펩타이드가 sulfatide와 PI4P에 결합성이 있다는 사실을 in vitro에서 확인하였다. 그래서, 본 연구에서는 sulfatide결합성과 TGN막 타기팅과의 연관성을 연구하고자 하였다. 이를 위해 우선 이전 문헌을 통해 sulfatide결합 펩타이드를 찾았고, 이를 GFP단백질과 융합하여 재조합 단백질(mHSBP-EGFP)을 만들어 세포내 타기팅을 실험해 보았다. 이러한 연구를 수행한 결과, mHSBP-EGFP가 HEK293T세포에서 TGN에 타기팅 되고, sulfatide결합이 망가진 돌연변이는 타기팅이 사라짐을 확인하였다. 또한, mHSBP-EGFP가 TGN에 타기팅 되는 것은 억제제인 antimycin A와 PAO와 adenosine에 의해 억제됨을 확인할 수 있었다. 이러한 사실을 통해, PAO와 adenosine에 민감한 인산화효소들, 그중에 PI4KII의 활성이 mHSBP-EGFP를 TGN으로 위치하게 하는데 중요한 역할을 수행한다고 추론할 수 있다.

Expression characterization and transcription regulation analysis of porcine Yip1 domain family member 3 gene

  • Ni, Dongjiao;Huang, Xiang;Wang, Zhibo;Deng, Lin;Zeng, Li;Zhang, Yiwei;Lu, Dongdong;Zou, Xinhua
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권3호
    • /
    • pp.398-407
    • /
    • 2020
  • Objective: The Yip1 domain family (YIPF) proteins were proposed to function in endoplasmic reticulum (ER) to Golgi transport and maintenance of the morphology of the Golgi, which were homologues of yeast Yip1p and Yif1p. YIPF3, the member 3 of YIPF family was a homolog of Yif1p. The aim of present study was to investigate the expression and regulation mechanism of porcine YIPF3. Methods: Quantitative realtime polymerase chain reaction (qPCR) was used to analyze porcine YIPF3 mRNA expression pattern in different tissues and pig kidney epithelial (PK15) cells stimulated by polyinosine-polycytidylic acid (poly [I:C]). Site-directed mutations combined with dual luciferase reporter assays and electrophoretic mobility shift assay (EMSA) were employed to reveal transcription regulation mechanism of porcine YIPF3. Results: Results showed that the mRNA of porcine YIPF3 (pYIPF3) was widely expressed with the highest levels in lymph and lung followed by spleen and liver, while weak in heart and skeletal muscle. Subcellular localization results indicated that it expressed in Golgi apparatus and plasma membranes. Upon stimulation with poly (I:C), the level of this gene was dramatically up-regulated in a time- and concentration-dependent manner. pYIPF3 core promoter region harbored three cis-acting elements which were bound by ETS proto-oncogene 2 (ETS2), zinc finger and BTB domain containing 4 (ZBTB4), and zinc finger and BTB domain containing 14 (ZBTB14), respectively. In which, ETS2 and ZBTB4 both promoted pYIPF3 transcription activity while ZBTB14 inhibited it, and these three transcription factors all played important regulation roles in tumorigenesis and apoptosis. Conclusion: The pYIPF3 mRNA expression was regulated by ETS2, ZBTB4, and ZBTB14, and its higher expression in immune organs might contribute to enhancing ER to Golgi transport of proteins, thus adapting to the immune response.