• Title/Summary/Keyword: Golf elbow

Search Result 17, Processing Time 0.031 seconds

Analysis of User Experience for the Development of Smart Golf-wear (스마트 골프웨어 개발을 위한 사용자경험 분석)

  • Sin, Sunmi;Do, Wolhee
    • Fashion & Textile Research Journal
    • /
    • v.23 no.1
    • /
    • pp.98-105
    • /
    • 2021
  • This study investigates and analyzes user preferences for golf wear with a sense of wear and smart function for the development of smart golf wear based on user convenience. A survey was conducted on 124 males in the age range of 40-60s that consisted of professional golfers, amateur golfers and the public with golf experience (such as major golf consumers) from August 1 to August 30, 2019 (IRB NO. 1040198-190617-HR-057-03); consequently, a 117 copies were accepted for analysis. The findings are as follows. The elbow (4.3%) of golf wear is unsatisfactory. The important part of the golf swing motion is the shoulder (39.3)>, elbow (30.8%)>, and wrist (6.8%). In addition, the unsatisfactory wearing of golf wear due to golf swing movements indicated that the shoulder or elbow area was pulled or the bottom of the top was raised during the back swing movements. The survey results on the expected discomfort when wearing smart wear are 'discomfort of obstruction when wearing' (53.8%), 'discomfort of washing' (17.1%), and 'weight of attached machine' (13.7%). Opinions such as 'Will not feel good when the sensor is attached' were investigated. The examination of the preference for golf wear equipped with smart functions indicated that a posture correction function to correct the golf swing posture is the most desired quality that is also considered important when correcting posture.

Golf participation after rotator cuff repair: functional outcomes, rate of return and factors associated with return to play

  • Thomas R Williamson;Patrick G Robinson;Iain R Murray;Andrew D Murray;Julie M McBirnie;C Michael Robinson;Deborah J MacDonald;Nicholas D Clement
    • Clinics in Shoulder and Elbow
    • /
    • v.26 no.2
    • /
    • pp.109-116
    • /
    • 2023
  • Background: Golf is a popular sport involving overhead activity and engagement of the rotator cuff (RC). This study aimed to determine to what level golfers were able to return to golf following RC repair, the barriers to them returning to golf and factors associated with their failure to return to golf. Methods: Patients preoperatively identifying as golfers undergoing RC repair at the study centre from 2012 to 2020 were retrospectively followed up with to assess their golf-playing status, performance and frequency of play and functional and quality of life (QoL) outcomes. Results: Forty-seven golfers (40 men [85.1%] and 7 women [14.9%]) with a mean age of 56.8 years met the inclusion criteria, and 80.1% were followed up with at a mean of 27.1 months postoperatively. Twenty-nine patients (76.3%) had returned to golf with a mean handicap change of +1.0 (P=0.291). Golf frequency decreased from a mean of 1.8 rounds per week preinjury to 1.5 rounds per week postoperatively (P=0.052). The EuroQol 5-dimension 5-level (EQ-5D-5L) index and visual analog scale (EQ-VAS) score were significantly greater in those returning to golf (P=0.024 and P=0.002), although functional outcome measures were not significantly different. The primary barriers to return were ipsilateral shoulder dysfunction (78%) and loss of the habit of play (22%). Conclusions: Golfers were likely (76%) to return to golf following RC repair, including mostly to their premorbid performance level with little residual symptomatology. Return to golf was associated with a greater QoL. Persistent subjective shoulder dysfunction (78%) was the most common barrier to returning to golf.

The Contribution of Body Segments to the Club Head's Kinetic Energy in the Golf Swing (골프 스윙 시 클럽 헤드의 운동에너지에 대한 신체 분절의 기여도)

  • Chang, Jae-Kwan;Ryu, Ji-Seon;Yoon, Suk-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.3
    • /
    • pp.317-325
    • /
    • 2011
  • The purpose of this study was to investigate the contributions of body joints to the kinetic energy of the clubhead in the golf swing. Three dimensional swing analysis was conducted on the seven KPGA golfers. The subjects were asked to swing with 45 inches of driver. The work done by body joints were computed by utilizing the inverse dynamics method. The order of work done by the body joints was lumbar > left hip > right shoulder > left wrist > right wrist > right hip at the first phase. At the second phase, the order of work done by the body joints was trunk > left elbow > right wrist > right shoulder > left wrist > right wrist. At the third phase, the order of work done by body joints was lumbar > right shoulder > left shoulder > left elbow > right wrist > right elbow. The sum of the work done by the body joints was lumbar > shoulder > wrist on the average. The kinetic energy of the club head was 430.11${\pm}$24.35 J and the subject's swing efficiency was shown as 31.82${\pm}$4.86% on the average. The contributions of body joints to the kinetic energy of the clubhead was the order of lumbar > upper right shoulder > left elbow > right wrist during the down swing.

Kinetic Analysis of Human Simulation for the Soft Golf Swing (소프트 골프 스윙 동작을 위한 인체 시뮬레이션의 운동역학 분석)

  • Kwak, K.Y.;Yu, M.;So, H.J.;Kim, S.H.;Kim, N.G.;Kim, D.W.
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.2
    • /
    • pp.141-150
    • /
    • 2010
  • The purpose of this study was to analyze the golf swing motion for a soft golf clubs and regular golf club. Soft golf is a newly developed recreational sports for all ages, including the elderly and the beginners of golf. To quantify the effect of using soft golf club, which much lighter club than regular clubs, a motion analysis has been performed using a 3D optoelectric motion tracking system that utilizes active infrared LEDs and near-infrared sensors. The subject performed swing motion using a regular golf club and a soft golf club in turn. The obtained motion capture data was used to build a 3D computer simulation model to obtain left wrist, elbow shoulder and lumbar joint force and torque using inverse and forward dynamics calculations. The joint force and torque during soft golf swing were lower than regular golf swing. The analysis gave better understanding of the effectiveness of the soft golf club.

Kinematic Analysis of Secondary School Golf Player's Putting Stroke Motion (중등학생 골프선수의 퍼팅 스트로크 동작에 대한 운동학적 분석)

  • Ko, Jae-Yeon;Oh, Cheong-Hwan
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.4
    • /
    • pp.447-455
    • /
    • 2010
  • The objective of this study was to analyze the difference in kinematic variables for successful and unsuccessful golf putting strokes. The study population included 8 male secondary school golf players who had played golf for over 3 years and whose handicap was 4 or lower. A hole was made on a 5-m-long artificial flat mat for practice, and an environment similar to that of a real green was created. The participants' motions were analyzed through 3D image analysis, and the difference in kinematic variables for successful and unsuccessful putting strokes in the same direction was determined. Data analysis revealed the following findings: The time spent for a segment of putting was the greatest for the backswing segment for both successful and unsuccessful strokes. During address and impact, the both changed to a larger extent. For successful putting strokes, the change in the elbow angle during the downswing was greater for the right elbow than for the left elbow. For both successful and unsuccessful putting strokes, the left shoulder angle increased during the segment from address to the turning point and decreased during the segment from the turning point to impact. In contrast, the right shoulder angle significantly differed between successful and unsuccessful putting strokes only during address. During successful and unsuccessful motions, the swing was executed with the moving displacement of the X-axis of the club head maintained almost constant along a straight light without back and forth movement. In the backswing segment, moving displacement of the Y- and Z-axes was greater in successful strokes than in unsuccessful strokes; however, this difference was very small for the Y-axis. The velocity of the club head for successful and unsuccessful motions significantly differed during address and at the turning point. The highest velocity of the ball was greater for successful than for unsuccessful putting strokes.

Spine & Lower extremity injuries in golf (골프에서 척추 및 하지의 손상)

  • Lee Dong Chul;Sohn Oog Jin
    • Journal of Korean Orthopaedic Sports Medicine
    • /
    • v.3 no.1
    • /
    • pp.15-21
    • /
    • 2004
  • Golf has become an increasingly a popular sports for young and older ages. It has benefits of walking exercise and enjoyment of sports . However, golf is considered to be a moderate risk activity for sports injury due to traumatic origin and overuse. Golf injuries primarily affect the dorsolumbar sites , upper extremity(elbow, shoulder, wrist) and lower extremity (knee, hip, ankle). Ajustment of golf swing and conditioning programmes for preventing injuries which include muscular strengthening, flexibility and a short pregame warm up help to reduce the incidence of injury.

  • PDF

Kinetic Analysis of Golf Fat Shot (골프 Fat shot에 대한 운동역학적 분석)

  • Sohn, Jee-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.10
    • /
    • pp.523-532
    • /
    • 2013
  • When the golf club hits the ground prior to making contact with the golf ball, we define it as 'fat shot'. The aim of this research was to investigate the difference between normal shot and fat shot in golf. Five candidates playing as recreational golfer participated in this research and they were all right-handed people. Time phase between each event, wrist cocking angle, elbow extension-flexion angle, backswing height, pelvis angle, thorax angle, L-GRF, R-GRF, pelvis linear velocity, pelvis angular velocity and COG path were calculated. For statistical analysis the paired T-test was used. An early un-cocking, an early right elbow extension and impact with leaving their weight behind foot were not reasons of fat shot. Backswing height, X-Factor, pelvis angle and thorax rotation angle were not different between normal shot and fat shot. But we could find a pattern of abrupt pelvic movement and weight shift to target direction just before impact in case of fat shot. In addition fat shot showed time-delayed and small value of pelvis linear velocity pattern to upward during downswing phase as against normal shot.

Evaluation Method for Fit of Golf wears based on 3D Motion Analysis - Focus on motion range of upper body - (3차원 동작분석법을 활용한 골프웨어 평가를 위한 기초연구 - 상체 동작범위를 중심으로 -)

  • Chung, Hye-Won;Shin, Ju-Young Annie;Nam, Yun-Ja
    • Fashion & Textile Research Journal
    • /
    • v.18 no.3
    • /
    • pp.338-350
    • /
    • 2016
  • The purpose of this study is to analyze joint angle for a range of swing motion derived through 3D motion analysis in order to design the ergonomic golf wear, use it for evaluation method of apparel fit to improve exercise functionality and provide the basic materials necessary for designing clothes. In order to do this, the subjects for this study were 3 men of age 20s. The data for a range of motion of golf swing were collected by using equipment for 3D motion analysis and then were used for analysis of joint angles and evaluation method of apparel fit. Range of motion was derived through 3D motion analysis of golf swing motion and joint angles for items of joint motion item and of X, Y, and Z-axis were calculated, respectively. In order to set the evaluation questions for evaluation of apparel fit, to find a range of motion at the maximal value and the minimal value of swing motion. As a result, during the swinging motion, neck extension, right shoulder extension, right/left elbow extension, right/left elbow supination did not appear. Items of joint motion showing the maximum at range of each swing motion were applied into 55 questions and consisted. The results of this study were meaningful as a basic study to apply 3D motion analysis to the fashion industry. It's expected to be used to design functional clothing.

A Study on Practical Function of Neoprene Fabric Design in wearable Device for Golf Posture Training: Focus on Assistance Band with Arduino/Flex Sensor (네오프렌(Neoprene)소재로 구성된 골프자세 훈련용 웨어러블 디바이스의 실용적 기능에 관한 연구: Flex Sensor 및 아두이노를 장착한 보조밴드를 중심으로)

  • Lee, Euna;Kim, Jongjun
    • Journal of Fashion Business
    • /
    • v.18 no.4
    • /
    • pp.1-14
    • /
    • 2014
  • Currently smart textile market is rapidly expanding and the demand is increasing integration of an electronic fiber circuit. The garments are an attractive platform for wearable device. This is one of the integration techniques, which consists of is the selective introduction of conductive yarns into the fabric through knitting, weaving or embroidering. The aim of this work is to develop a golf bend driven prototype design for an attachable Arduino that can be used to assess elbow motion. The process begins with the development of a wearable device technique that uses conductive yarn and flex sensor for measurement of elbow bending movements. Also this paper describes and discusses resistance value of zigzag embroidery of the conductive yarns on the tensile properties of the fabrics. Furthermore, by forming a circuit using an Arduino and flex sensor the prototype was created with an assistance band for golf posture training. This study provides valuable information to those interested in the future directions of the smart fashion industry.