• Title/Summary/Keyword: Gold thin-film

Search Result 137, Processing Time 0.028 seconds

Spectroscopic and Electrochemical Detection of Thrombin/5'-SH or 3'-SH Aptamer Immobilized on (porous) Gold Substrates

  • Park, Buem-Jin;Sa, Young-Seung;Kim, Yong-Hwan;Kim, Young-Hun
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.100-104
    • /
    • 2012
  • Thrombin is a serine protease that catalyzes the conversion of soluble fibrinogen to insoluble fibrin, and thus induces physiological and pathological blood coagulation. Therefore, it is important to detect thrombin in blood serum for purposes of diagnosis. To achieve this goal, it has been suggested that a 15-mer aptamer strongly binds with thrombin to form a G-quartet structure of the aptamer. Generally, 5'-end thiol-functionalized aptamer has been used as an anti-thrombin binder. Herein, we evaluate the possibility of utilizing a 3'-SH aptasensor for thrombin detection using SPR spectroscopy, and compare the enhancement of the electrochemical signal of the thrombin-aptamer bound on a porous gold substrate. Although the two aptamers have similar configurations, in SPR analysis, the 3'-SH aptamer was a effective aptasensor as well as 5'-SH aptamer. Results from electrochemical analysis showed that the porous gold substrate acted as a good substrate for an aptasensor and demonstrated 5-fold enhancement of current change, as compared to gold thin film.

Generated heat decrease of thin film superconducting fault current limiter using diodes (Diode를 이용한 박막형 한류기의 열발생 저감방안)

  • Choi, Hyo-Sang;Hyun, Ok-Bae;Kim, Hye-Rim;Hwang, Si-Dole
    • Progress in Superconductivity and Cryogenics
    • /
    • v.2 no.2
    • /
    • pp.11-14
    • /
    • 2000
  • We fabricated a resistive superconducting fault current limiter (SFCL) of meander type based on a YBCO film. In order to disperse the heat generated at hot spots in the YBCO film the film was coated with a gold shunt layer. When diodes were inserted in the parallel circuit to restrict the temperature increase in the SFCL element by reducing power supply cycles, the voltage could be increased to $\sqrt{2}$ times with the same quench resistance at a half and full cycles.

  • PDF

A Study on Space Charge of Organic Pentacene/metal Interface (유기물 Pentacene 박막과 금속 계면에서의 Space Charge 연구)

  • Yoon, Young-Woon;Babajayan, Arsen;Lee, Hoo-Neung;Kim, Song-Hui;Lee, Kie-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.1
    • /
    • pp.41-46
    • /
    • 2007
  • Surface potential properties at the interface of pentacene thin films on gold (Au) and aluminum (Al) surfaces were investigated by using a near-field scanning microwave microprobe (NSMM). The surface potential formed across the pentacene film was observed by measuring the microwave reflection coefficient $S_{11}$ and compared with the result of a Kelvin-probe method. The obtained reflection coefficient ${\Delta}S_{11}$ of the pentacene thin films on Al was decreased as the pentacene film thickness increased due to the increased accumulation of negative space charges, while for Au ${\Delta}S_{11}$ was essentially constant.

A Study of Hear Flux and Instantaneous Temperature According to the Initial Tamperature of Combustion Chamber in a Constant Volume Combustion Chamber (연소실 초기온도 변화에 따른 순간열유속에 관한 연구)

  • Lee, Chi-Woo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.3
    • /
    • pp.193-200
    • /
    • 2003
  • In the production of internal combustion engines, there has been a move towards the development of high performance engines with improved fuel efficiency, lighter weight and smaller sizes. These trends help to answer problems in engines related to thermal load and abnormal combustion. In order to investigate these problems, a thin film-type probe for instantaneously measuring temperatures has been suggested. A method for manufacturing such a probe was established in this study. The instantaneous surface temperature of a constant volume combustion chamber was measured by this probe and the heat flux was obtained through Fourier analysis. In order to thoroughly understand the characteristics of combustion, the authors measured the wall temperature of the combustion chamber and computed heat flux through a cylinder wall while varying the protrusion height of the probe. For achieving the above goals, a instantaneous temperature probe was developed, thereby making possible the analysis of the instantaneous temperature of wall surface and the detection of unsteady heat flux in the constant volume combustion chamber.

  • PDF

Analysis on quench recovery of Au/YBCO thin film mender lines (Au/YBCO 박막 meander line의 퀜치회복에 대한 분석)

  • 김혜림;최효상;임해용;김인선;현옥배
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2001.02a
    • /
    • pp.92-94
    • /
    • 2001
  • We investigated quench recovery characteristics of Au/YBCO thin film meander lines. YB$a_{2}$$Cu_{3}$ $O_{7}$films were coated in-situ with a gold layer and patterned into 2 mm wide meander lines by photolithography. The limiters were tested with simulated fault currents at various source voltages. Resistance decreased first slowly and then rapidly to zero. Resistance vs. time curves for different source voltages fell on top of each other when translated horizontally. The slowly varying portion of data fell on straight lines of a slope on a semi-log scale at all source voltages. A heat balance equation reflecting heat loss from meander lines to surroundings explains these results quantitatively.

  • PDF

Study on the Heat Flux Using Instantaneous Temperature in the Constant Volume Combustion Chamber (정적연소기에서 순간온도를 이용한 열유속에 관한 연구)

  • 이치우;김지훈;하종률;김시범
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.4
    • /
    • pp.103-111
    • /
    • 2001
  • In the present study, the internal combustion engine tends to high performance, fuel economy, small-sized. Therefore, it is necessary to solve the problems on thermal load, abnormal combustion, etc in the engine. Thin film instantaneous temperature probe was made, and the measuring system was established. The instantaneous surface temperatures in the constant volume combustion chamber were measured with this system and the heat flux was obtained by Fourier analysis. Maximum instantaneous temperatures were obtained after 55∼60ms from ignition and they increased as equivalence ratio and varied differently as the position of probe. Total heat loss during combustion time was affected by the equivalence ratio and differed widely as the position of probe.

  • PDF

Contact and Electrical Characteristics of $\alpha$-67 Thin-Film for the fabrication of organic Thin-Film Transistor (유기 TFT 재작을 위한 $\alpha$&$-67 박막의 접촉 및 전기적 특성)

  • 오세운;김대엽;최종선;박미경;김영관;신동명
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.313-316
    • /
    • 1998
  • Conjugated oligomers have been already used as active layers in field effect transistors, photodiodes and electroluminescent devices. Particularly thiophene oligomers such $\alpha$ -sexithiophene($\alpha$-6T) attract great interest for its prospective app1ications in large-area flexible displays. In this study, we investigated the contact properties between the organic semiconductor $\alpha$-6T and metals such as Au(Gold), Ag(Silver), Cr(Chromium), Al(Aluminum), Cr(Chromium). Using the Transmission Line Model(TLM) method, specific contact resistances of the metal lines in contact with the $\alpha$-6T were determined. From the current-voltage characteristics, electrical conductivity of the $\alpha$-6T films is found.

  • PDF

Resistance Distribution in Thin Film Type SFCL Elements with Shunt Layers of Different Thicknes

  • Kim, Hye-Rim;Hyun, Ok-Bae;Lee, Seung-Yup;Yu, Kwon-Kyu;Kim, In-Seon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.2
    • /
    • pp.41-45
    • /
    • 2003
  • Resistance distribution in thin film type SFCL elements of different shunt layer thickness was investigated. The 300 nm thick film of 2 inch diameter was coated with a gold layer and patterned into 2 mm wide meander lines. The shunt layer thickness was varied by ion milling the shunt layer with Ar ions, and also by having the shunt layer grown in different thickness. The SFCL element was subjected to simulated AC fault current for measurements. It was immersed in liquid nitrogenduring the experiment. The resistance distribution was not affected by the shunt layer thickness at applied voltages that brought the temperature of the elements to similar values. This result could be explained with the concept of heat transfer from the film to the surroundings. The resistance distribution was independent of the shunt layer thickness because thick sapphire substrates of high thermal conductivity dominated the thermal conductance of the elements.

Fabrication and Performance Evaluation of Thin Film RTD Temperature Sensor Array on a Curved Glass Surface (곡면 유리 표면 위에서 박막 측온저항체 온도센서 어레이 제작 및 성능 평가)

  • Ahn, Chul-Hee;Kim, Hyoung-Hoon;Park, Sang-Hu;Son, Chang-Min;Go, Jeung-Sang
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.2
    • /
    • pp.34-39
    • /
    • 2011
  • This paper presents a novel direct fabrication method of the thin metal film RTD temperature sensor array on an arbitrary curved surface by using MEMS technology to measure a distributed temperature field up to $300^{\circ}C$ without disturbing a fluid flow. In order to overcome the difficulty in the three dimensional photography of sensor patterning, the UV pre-irradiated photosensitive dry film resist technology has been developed newly. This method was applied to the fabrication of the temperature sensor array on a glass tube, which is arranged parallel and transverse to a main flow. Gold was used as a temperature sensing material. The resistance change was measured in a thermally controlled oven by increasing the environmental temperature. The linear increase in resistance change and a constant slope were obtained. Also, the sensitivity of each RTD temperature sensor was evaluated.

Resistance Development in Au/YBCO Thin Film Meander Lines under High-Power Fault Conditions (과도 사고 시 Au/YBCO 박막 곡선의 저항 거동)

  • Kim, H.R.;Sim, J.;Choi, I.J.;Yim, S.W.;Hyun, O.B.
    • Progress in Superconductivity
    • /
    • v.8 no.1
    • /
    • pp.81-86
    • /
    • 2006
  • We investigated resistance development in $Au/YBa_2Cu_3O_7(YBCO)$ thin film meander lines during high-power faults. The meander lines were fabricated by patterning 300 nm thick YBCO films coated with 200 nm thick gold layers into meander lines. A gold film grown on the back side of the substrate was also patterned into a meander line. The front meander line was connected to a high-power fault-test circuit and the back line to a DC power supply. Resistance of both lines was measured during the fault. They were immersed in liquid nitrogen during the experiment. Behavior of the resistance development prior to quench completion could be understood better by comparing resistance of the front meander lines with that of the back. Quench completion point could be determined clearly. Resistance and temperature at the quench completion point were not affected by applied field strength. The experimental results were analyzed quantitatively with the concept of heat transfer within the meander lines/substrate and to the surrounding liquid nitrogen. In analysis, the fault period was divided into three regions: flux-flow region, region prior to quench completion, and region after quench completion. Resistance was calculated for each region, reflecting the observation for quench completion. The calculated resistance in three regions was joined seamlessly and agreed well with data.

  • PDF