• Title/Summary/Keyword: Gold surfaces

Search Result 155, Processing Time 0.03 seconds

Performance Improvement of IPMC(Ionic Polymer Metal Composites) for a Flapping Actuator

  • Lee, Soon-Gie;Park, Hoon-Cheol;Pandita Surya D.;Yoo Young-Tai
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.6
    • /
    • pp.748-755
    • /
    • 2006
  • In this paper, a trade-off design and fabrication of IPMC(Ionic Polymer Metal Composites) as an actuator for a flapping device have been described. Experiments for the internal solvent loss of IPMCs have been conducted for various combinations of cation and solvent in order to find out the best combination of cation and solvent for minimal solvent loss and higher actuation force. From the experiments, it was found that IPMCs with heavy water as their solvent could operate longer. Relations between length/thickness and tip force of IPMCs were also quantitatively identified for the actuator design from the tip force measurement of 200, 400, 640, and $800{\mu}m$ thick IPMCs. All IPMCs thicker than $200{\mu}m$ were processed by casting $Nafion^{TM}$ solution. The shorter and thicker IPMCs tended to generate higher actuation force but lower actuation displacement. To improve surface conductivity and to minimize solvent evaporation due to electrically heated electrodes, gold was sputtered on both surfaces of the cast IPMCs by the Physical Vapor Deposition(PVD) process. For amplification of a short IPMC's small actuation displacement to a large flapping motion, a rack-and-pinion type hinge was used in the flapping device. An insect wing was attached to the IPMC flapping mechanism for its flapping test. In this test, the wing flapping device using the $800{\mu}m$ thick IPMC. could create around $10^{\circ}{\sim}85^{\circ}$ flapping angles and $0.5{\sim}15Hz$ flapping frequencies by applying $3{\sim|}4V$.

The effects of noise reduction, sharpening, enhancement, and image magnification on diagnostic accuracy of a photostimulable phosphor system in the detection of non-cavitated approximal dental caries

  • Kajan, Zahra Dalili;Davalloo, Reza Tayefeh;Tavangar, Mayam;Valizade, Fatemeh
    • Imaging Science in Dentistry
    • /
    • v.45 no.2
    • /
    • pp.81-87
    • /
    • 2015
  • Purpose: Contrast, sharpness, enhancement, and density can be changed in digital systems. The important question is to what extent the changes in these variables affect the accuracy of caries detection. Materials and Methods: Forty eight extracted human posterior teeth with healthy or proximal caries surfaces were imaged using a photostimulable phosphor (PSP) sensor. All original images were processed using a six-step method: (1) applying "Sharpening 2" and "Noise Reduction" processing options to the original images; (2) applying the "Magnification 1:3" option to the image obtained in the first step; (3) enhancing the original images by using the "Diagonal/"option; (4) reviewing the changes brought about by the third step of image processing and then, applying "Magnification 1:3"; (5) applying "Sharpening UM" to the original images; and (6) analyzing the changes brought about by the fifth step of image processing, and finally, applying "Magnification 1:3." Three observers evaluated the images. The tooth sections were evaluated histologically as the gold standard. The diagnostic accuracy of the observers was compared using a chi-squared test. Results: The accuracy levels irrespective of the image processing method ranged from weak (18.8%) to intermediate (54.2%), but the highest accuracy was achieved at the sixth image processing step. The overall diagnostic accuracy level showed a statistically significant difference (p=0.0001). Conclusion: This study shows that the application of "Sharpening UM" along with the "Magnification 1:3" processing option improved the diagnostic accuracy and the observer agreement more effectively than the other processing procedures.

Surface Structures and Thermal Desorption Behaviors of Cyclopentanethiol Self-Assembled Monolayers on Au(111)

  • Kang, Hun-Gu;Kim, You-Young;Park, Tae-Sun;Park, Joon-B.;Ito, Eisuke;Hara, Masahiko;Noh, Jae-Geun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1253-1257
    • /
    • 2011
  • The surface structures, adsorption conditions, and thermal desorption behaviors of cyclopentanethiol (CPT) self-assembled monolayers (SAMs) on Au(111) were investigated by scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and thermal desorption spectroscopy (TDS). STM imaging revealed that although the adsorption of CPT on Au(111) at room temperature generates disordered SAMs, CPT molecules at $50^{\circ}C$ formed well-ordered SAMs with a $(2{\surd}3{\times}{\surd}5)R41^{\circ}$ packing structure. XPS measurements showed that CPT SAMs at room temperature were formed via chemical reactions between the sulfur atoms and gold surfaces. TDS measurements showed two dominant TD peaks for the decomposed fragments ($C_5H_9^+$, m/e = 69) generated via C-S bond cleavage and the parent molecular species ($C_5H_9SH^+$, m/e = 102) derived from a recombination of the chemisorbed thiolates and hydrogen atoms near 440 K. Interestingly, dimerization of sulfur atoms in n-alkanethiol SAMs usually occurs during thermal desorption and the same reaction did not happen for CPT SAMs, which may be due to the steric hindrance of cyclic rings of the CPT molecules. In this study, we demonstrated that the alicyclic ring of organic thiols strongly affected the surface structure and thermal desorption behavior of SAMs, thus providing a good method for controlling chemical and physical properties of organic thiol SAMs.

Radiotherapy Technique of High Energy Electron (고에너지 전자선의 방사선 치료 기술)

  • SUH M.W.;PARK J.I.;CHOI H.S.;KIM W.Y.
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.1 no.1
    • /
    • pp.63-69
    • /
    • 1985
  • High energy electron beams took effect for tumor radio-therapy, however, had a lot of problems in clinical application because of various conversion factors and complication of physical reactions. Therefore, we had experimentally studied the important properties of high energy electron beams from the linear accelerator, LMR-13, installed in Yonsei Cancer Center. The results of experimental studies on the problems in the 8, 10, 12 Mev electron beam therapy were reported as following. 1. On the measurements of the outputs and absorbed does, the ionization type dosimeters that had calibrated by $^{90}Sr$ standard source were suitable as under $3\%$ errors for high energy electrons to measure, but measuring doses in small field sizes and the regions of rapid fall off dose with ionization chambers were difficult. 2. The electron energy were measured precisely with energy spectrometer consisted of magnet analyzer and tele-control detector and the practical electron energy was calculated under $5\%$ errors by maximum range of high energy electron beam in the water. 3. The correcting factors of perturbated dose distributions owing to radiation field, energy and material of the treatment cone were checked and described systematically and variation of dose distributions due to inhomogeneous tissues and sloping skin surfaces were completely compensated. 4. The electron beams, using the scatters; i.e., gold, tin, copper, lead, aluminium foils, were adequately diffused and minimizing the bremsstrahlung X-ray induced by the electron energy, irradiation field size and material of scatterers, respectively. 5. Inproving of the dose distribution from the methods of pendulum, slit, grid and focusing irradiations, the therapeutic capacity with limited electron energy could be extended.

  • PDF

Studies on Dose Distribution and Treatment Technique of High Energy Electron (고(高)에너지 전자선(電子線) 치료(治療)를 위(爲)한 선량분포(線量分布) 및 기술적(技術的) 문제(問題)의 연구(硏究))

  • Lee, D.H.;Chu, S.S.
    • Journal of Radiation Protection and Research
    • /
    • v.3 no.1
    • /
    • pp.6-22
    • /
    • 1978
  • High energy electron beams took effect for tumor radio-therapy, however, had a lot of problems in clinical application because of various conversion factors and complication of physical reactions. Therefor, we had experimentally studied the important properties of high energy electron beams from the linear accelerator, LMR-13, installed in Yonsei Cancer Center. The results of experimental studies on the problems in the 8, 10, 12 Mev electron beam therapy were reported as following. 1. On the measurements of the outputs and absorbed doses, the ionization type dosimeters that had calibrated by $^{90}Sr$ standard source were suitable as under 3% errors for high energy electrons to measure, but measuring doses in small field sizes and the regions of rapid fall off dose with ionization chambers were difficult. 2. The electron energy were measured precisely with energy spectrometer consisted of magnet analyzer and tele-control detector and the practical electron energy was calculated under 5% errors by maximum range of high energy electron beam in the water. 3. The correcting factors of perturbated dose distributions owing to radiation field, energy and material of the treatment cone were checked and described systematically and variation of dose distributions due to inhomogeneous tissues and sloping skin surfaces were completely compensated. 4. The electron beams, using the scatterers; ie., gold, tin, copper, lead, aluminium foils, were adequately diffused and minimizing the bremsstrahlung X-ray induced by the electron energy, irradiation field size and material of scatterers, respectively. 5. Inproving of the dose distribution from the methods of pendulum, slit, grid and focusing irradiations, the therapeutic capacity with limited electron energy could be extended.

  • PDF

A Study on the Glamour Images Shown in Contemporary Fashion (현대 패션에 나타난 글래머 이미지)

  • Choi, Jung-Hwa
    • The Research Journal of the Costume Culture
    • /
    • v.13 no.5 s.58
    • /
    • pp.763-776
    • /
    • 2005
  • The purpose of this study is to analyze the glamour image in contemporary women's fashion since 1990. The method of study is to analyze the documentary and fashion magazines about the glamour images. Most of all, glamour has been composed by connection of hollywood film industry and fashion. Glamourous body image showed sensual, threatening and vague body. Formative characteristics in fashion showed a tight silhouette, neglige, lace look, dress showing neck and shoulder, fur coat, stiletto, diamond, gold, big and thick jewelry, satin, velvet, lace, mink and fox fur, etc. Internal meaning was a fantasy, ideal, wealth, fame, hyper-feminity, vagueness, vulgarity, sexuality, mystery, professional, fatalness, aggressiveness and evil. Since 1990, the glamour images in fashion were as follows; First, the glamour with hyper-feminity showed a classical femme-fatal image as fearful existence with a power more than allure. Second, the glamour with vulgarity showed an exaggerated, cheap and popular kitsch image, which have intense colors, lavish surfaces and excessive sexual signs. Third, the glamour with classical sensuality showed a hi-glamour image of hollywood actresses being active from 1930 to 1950, which was expressed glittery dress, stole, diamond, fur wrap, hill, luxury dress. Fourth, the glamour with sexual perversion showed an erotic, vague and sexual drag image, and fetish costume. Fetishistic elements were rubber, PVC, stiletto, thick and high boots and corset and particularly, they were a main method of expression of glamour image. Fifth, the glamour with future image showed a mechanical and mysterious image and it was a conscious style by metallic, plastic and sleeky fabric. In conclusion, glamour fashion image is an ideal beauty type of women and will exist as a meaningful aesthetic sign in women's fashion.

  • PDF

SCANNING ELECTRON MICROSCOPIC STUDY OF THE INFLUENCE OF SIALOADENECTOMY ON THE CALCIFICATION OF DENTIN IN RATS (타액선(唾液腺) 적출(摘出)이 상아질(象牙質) 형성(形成)에 미치는 영향(影響)에 관(關)한 주사(走査) 전자현미경적(電子顯微鏡的) 연구(硏究))

  • Lee, Young-Sik;Park, Sang-Jin;Min, Byung-Soon;Choi, Ho-Young
    • Restorative Dentistry and Endodontics
    • /
    • v.14 no.1
    • /
    • pp.57-70
    • /
    • 1989
  • The purpose of this study was to investigate the effect of salivary gland on the calcification of dentin in rats. 80 Sprague-Dawley male rats that weighed approximately 120gm were used in this study. 5 rats among them were shared as controls. 75 rats received sialoadenectomy were divided into submaxillary adenectomy group, parotidectomy group, and submaxillary-parotid gland combined removal group. In experimental groups, 25 rats in each of the 3 groups were sacrificed at the following intervals; 3 days, 1, 2, 3 and 4 weeks. All animals were sacrificed by vascular perfusion with 10% formalin. The maxillary incisors including periapical tissues were removed and defatted in 20% KOH solution at $0^{\circ}C$ for 24 hours, and dehydrated with acetone. Each tooth specimen was attached on the stab for scanning electron microscopic study. Gold was coated on the each specimen in the thickness of 300${\AA}$ at D.C. 1400V, 6mA for 6 minutes with coating machine (Eiko IB-3). Inner dentinal surfaces of the specimens were observed with SEM (Hitachi S-450). The results were as follows, 1. Parotidectomy groups were found to be inhibited the formation of dentinal calcification compared to submaxillary adenectomy groups in the eady stages. 2. Combined removal of submaxillary and parotid gland was appeared to cause more severe inhibition effect on the dentinal calcification than that of each salivary gland separately. 3. Inhibition of the calcification and mineralization of dentin caused by sialoadenectomy was more extreme from 3 day to 2 weeks after beginning of the experiments. However it was tended to be normalized after that. 4. Salivary gland was responsible for alterations in calcification and mineralization of dentinal growth.

  • PDF

Plasmonic Nanosheet towards Biosensing Applications

  • Tamada, Kaoru
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.105-106
    • /
    • 2013
  • Surface plasmon resonance (SPR) is classified into the propagating surface plasmon (PSP) excited on flat metal surfaces and the local surface plasmon (LSP) excited by metalnanoparticles. It is known that fluorescence signals are enhanced by these two SPR-fields.On the other hand, fluorescence is quenched by the energy transfer to metal (FRET). Bothphenomena are controlled by the distance between dyes and metals, and the degree offluorescence enhancement is determined by the correlation. In this study, we determined thecondition to achieve the maximum fluorescence enhancement by adjusting the distance of ametal nanoparticle 2D sheet and a quantum dots 2D sheet by the use of $SiO_2$ spacer layers. The 2D sheets consisting of myristate-capped Ag nanoparticles (AgMy nanosheets) wereprepared at the air-water interface and transferred onto hydrophobized gold thin films basedon the Langmuir-Schaefer (LS) method [1]. The $SiO_2$ sputtered films with different thickness (0~100 nm) were deposited on the AgMy nanosheet as an insulator. TOPO-cappedCdSe/CdZnS/ZnS quantum dots (QDs, ${\lambda}Ex=638nm$) [2] were also transferred onto the $SiO_2$ films by the LS method. The layered structure is schematically shown in Fig. 1. The result of fluorescence measurement is shown in Fig. 2. Without the $SiO_2$ layer, the fluorescence intensity of the layered QD film was lower than that of the original QDs layer, i.e., the quenching by FRET was predominant. When the $SiO_2$ thickness was increased, the fluorescence intensity of the layered QD film was higher than that of the original QDs layer, i.e., the SPR enhancement was predominant. The fluorescence intensity was maximal at the $SiO_2$ thickness of 20 nm, particularly when the LSPR absorption wavelength (${\lambda}=480nm$) was utilized for the excitation. This plasmonic nanosheet can be integrated intogreen or bio-devices as the creation point ofenhanced LSPR field.

  • PDF

THE DIMENSIONAL CHANGE OF CAST IMPLANT BARS AFTER LABORATORY PROCEDURE

  • Kwon, Ji-Yung;Kim, Chang-Whe;Lim, Young-Jun;Kim, Myung-Joo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.3
    • /
    • pp.354-361
    • /
    • 2007
  • Statement of Problems. The precision of fit between the bearing surfaces of implant abutments and the prosthesis framework has been considered fundamental to implant prosthodontic protocol. Purpose. The study aimed to investigate the effect of laboratory procedure on the dimensional accuracy of cast implant bars. Material and methods Thirty implant bars were fabricated on a metal master model. The gap distances were measured at the right implant abutment replica-gold cylinder interface after casting procedure. The bar length data of precasting and postcasting state were collected and analyzed. Results. The mean gap distance found after casting was $106.3{\mu}m$ for buccal side, $122.1{\mu}m$ for distal side and $117.1{\mu}m$ for the lingual side. The mean bar length was $17964.7{\mu}m$ at precasting measurement, $17891.6{\mu}m$ at postcasting measurement. The mean change of bar length was $-73.1{\mu}m$. Conclusion. Even though the techniques used in this study strictly followed the guidelines established in the literature, the 30 cast implant bars evaluated all yielded gap distances that were beyond acceptable accuracy. There was a statistically significant difference between precasting and postcasting bar length (P<0.01). There was a decreasing tendency in bar length after casting procedure. It was necessary to correct this dimensional change from laboratory procedure by some corrective methods.

Encapsulation of ZnSe Quantum Dots within Silica by Water-in-oil Microemulsions (마이크로에멀전을 이용한 실리카에 담지된 ZnSe 양자점 제조)

  • Lee, Areum;Kim, Ji Hyeon;Yoo, In Sang;Park, Sang Joon
    • Applied Chemistry for Engineering
    • /
    • v.22 no.3
    • /
    • pp.328-331
    • /
    • 2011
  • ZnSe quantum dots (QDs) were prepared by employing water-containing Dioctyl sodium sulfosuccinate (AOT) reversed micelles (microemulsions) and the silica-encapsulated ZnSe QDs were obtained by a direct injection of tetraethyl orthosilicate (TEOS) into the microemulsion system. When the QDs were coated by silica, well-defined spherical shapes were formed and the average size of the QDs was near 7 nm. In addition, the photoluminescence (PL) efficiency of the QDs was reduced from 8.0 to 1.1% as they were encapsulated by silica. However, the solid layers of the silica-encapsulated ZnSe QDs on gold surfaces showed the excellent photostability. In particular, they are cadmium free and thus, less toxic. Moreover, the present method does not require a hot reaction temperature or extremely toxic H2Se gas as a Se precursor. Accordingly, the method can be a safer and more economical process for producing silica-encapsulated ZnSe QDs, which may be a potential media for biosensors.