• Title/Summary/Keyword: Gold nanowire

Search Result 14, Processing Time 0.027 seconds

Analysis of Au-DNA Nanowires by Adding HCl to Change Charges of Au Nanoparticles

  • Jeong, Yun-Ho;Kim, Dae-Cheol;Park, Hyeon-Gyu;No, Yong-Han
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.421.1-421.1
    • /
    • 2014
  • Top-down processes based on photolithography technology have been developed by using light sources with short wavelength, however, the processes are expected to meet their limits in higher integration of semiconductor integrated circuits. To overcome the limits, researches on bottom-up processes have been proceeded. One of those, fabrication of nanodevices by using nanoparticles has been on research. But it is difficult to align nanoparticles at appropriate positions. To resolve this, studies has been proceeded to form nanowires by bonding DNA molecules which have self-assembly property and positive-charged functionalized gold nanoparticles. There are negative-charged phosphates in backbones of DNA molecules. By using the attractive force between the negative charge of the phosphates and the positive charge of gold nanoparticles, the Au-DNA nanowires are made. However, bonding Au nanoparticles only on DNA molecules, not other nanoparticles, is to be solved. So we studied to resolve this problem. In the formation of Au nanoparticles, we changed the charge of Au nanoparticles by adding HCl to control pH of the functionalized nanoparticles, measured zeta potential. Then we bonded the nanoparticles and DNA molecules and made observation by using FE-SEM and AFM.

  • PDF

Spatially Selective Immobilization of Functional Materials onto Silicon Surfaces Using Electrochemical Method (전기화학을 이용한 실리콘 표면상으로 기능성 물질의 공간 선택적 고정화 연구)

  • Park, Soo-Hyoun;Ah, Chil-Seong;Kim, Kyu-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.1
    • /
    • pp.40-46
    • /
    • 2009
  • We present a method for spatially selective immobilization of functional materials, such as proteins and nanoparticles, onto pre-activated silicon surfaces by electrochemical reaction. Carboxymethylbenzendiazonium (CMBD) cations, being adsorbable on silicon surfaces through electrochemically reductive deposition, is used as an anchor molecule to prepare the pre-activated silicon surfaces. It is demonstrated that the use of BD reaction is very efficient for the selective immobilization because the functional materials are immobilized exclusively onto the pre-adsorbed CMBD region. The method is applied to immobilize gold nanoparticles on the selected nanowire of the nanowire array.

Fabrication of a nanowire diluter using electrical fields (전기장을 이용한 나노와이어 희석기 제작)

  • Yang, Jin-Ho;Yoon, Hyeun-Joong;Yang, Eui-Hyeok;Yang, Sang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1484-1485
    • /
    • 2008
  • The control of the number and dimension of nanowires is essential for dielectrophoretic(DEP) nanoscale assembly process. However, it is difficult to control the number of nanowires assembled between the electrodes. We have developed a nanowire diluter device, which consists of a glass substrate with gold electrodes and a PDMS layer with microchannel. The diluter device is fabricated by the conventional and soft lithographies using a SU-8 mold. Nickel nanowires (30${\mu}m$-long) are fabricated by a template-directed electrodeposition process using nanoporous alumina templates. A solution containing nanowires is injected into an inlet whereby pulsed voltages are applied to 16 pairs of electrodes in this experiment. The nanowires are trapped or released depending on the pulsed electric field from inlet to outlet (the channel). Therefore, the number of nanowires can be decreased correspondingly if the fixed frequency at each electrode is decreased from electrode to electrode.

  • PDF

Estimation of Sensitivity Enhancements on Localized Surface Plasmon Resonance Sensor Using Dielectric Multilayer (유전체 다중층을 이용한 국소 표면 플라즈몬 공명 센서의 감도 향상에 관한 연구)

  • Ahn, Heesang;Kang, Tae Young;Oh, Jin-Woo;Kim, Kyujung
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.1
    • /
    • pp.28-32
    • /
    • 2017
  • In this research, we designed an LSPR sensor based on a thin-film multilayer comprising $TiO_2$ and $SiO_2$. The thickness of the overall substrate layer of the suggested multilayer LSPR sensor is limited to 100 nm, and the number of repeating $TiO_2$ and $SiO_2$ thin films is 1-4 within a limited thickness. Additionally, a nanowire structure with a gold thin film of 40 nm, height of 40 nm, period of 600 nm, and line width of 300 nm was formed on the multilayer. To design the variable wavelength-type SPR, the angle was fixed at $75^{\circ}$ and the wavelength was changed. We then simulated the system with the finite-element method (FEM) using Maxwell's equations. It was confirmed that the resonance wavelength became shorter as the number of multilayers increased when the refractive index was fixed. We found that the wavelength changes were more sensitive. However, no changes were observed when the number of the multilayers was three or higher.