• Title/Summary/Keyword: Gold film

Search Result 280, Processing Time 0.053 seconds

Adhesive bonding using thick polymer film of SU-8 photoresist for wafer level package

  • Na, Kyoung-Hwan;Kim, Ill-Hwan;Lee, Eun-Sung;Kim, Hyeon-Cheol;Chun, Kuk-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.325-330
    • /
    • 2007
  • For the application to optic devices, wafer level package including spacer with particular thickness according to optical design could be required. In these cases, the uniformity of spacer thickness is important for bonding strength and optical performance. Packaging process has to be performed at low temperature in order to prevent damage to devices fabricated before packaging. And if photosensitive material is used as spacer layer, size and shape of pattern and thickness of spacer can be easily controlled. This paper presents polymer bonding using thick, uniform and patterned spacing layer of SU-8 2100 photoresist for wafer level package. SU-8, negative photoresist, can be coated uniformly by spin coater and it is cured at $95^{\circ}C$ and bonded well near the temperature. It can be bonded to silicon well, patterned with high aspect ratio and easy to form thick layer due to its high viscosity. It is also mechanically strong, chemically resistive and thermally stable. But adhesion of SU-8 to glass is poor, and in the case of forming thick layer, SU-8 layer leans from the perpendicular due to imbalance to gravity. To solve leaning problem, the wafer rotating system was introduced. Imbalance to gravity of thick layer was cancelled out through rotating wafer during curing time. And depositing additional layer of gold onto glass could improve adhesion strength of SU-8 to glass. Conclusively, we established the coating condition for forming patterned SU-8 layer with $400{\mu}m$ of thickness and 3.25 % of uniformity through single coating. Also we improved tensile strength from hundreds kPa to maximum 9.43 MPa through depositing gold layer onto glass substrate.

Etching characteristics of gold thin films using inductively coupled Ar/$CF_4/Cl_2$ plasma (Ar/$CF_4/Cl_2$ 유도 결합 플라즈마에 의한 gold 박막의 식각특성)

  • Kim, Nam-Kyu;Chang, Yun-Seong;Kim, Dong-Pyo;Kim, Chang-Il;Chang, Eui-Goo;Lee, Byeong-Ki
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.190-194
    • /
    • 2002
  • In this study, the etching of Au thin films have been performed in an inductively coupled CF4/Cl2/Ar plasma. The etch properties were measured as the CF4 adds from 0 % to 30 % to the Cl2/(Cl2 + Ar) gas mixing ratio of 0.2. Other parameters were fixed at a rf power of 700 W, a dc bias voltage of 150 V, a chamber pressure of 15 mTorr, and a substrate temperature of $30^{\circ}C$. The highest etch rate of the Au thin film was 370 nm/min at a 10 % additive CF4 into Cl2/(Cl2 + Ar) gas mixing ratio of 0.2. The surface reaction of the etched Au thin films was investigated using x-ray photoelectron spectroscopy (XPS) analysis. From x-ray photoelectron spectroscopy (XPS) analysis, the intensities of Au peaks are changed. There is a chemical reaction between Cl and Au. Au-Cl is hard to remove on the surface because of its high melting point and the etching products can be sputtered by Ar ion bombardment. We obtained the cleaned and steep profile.

  • PDF

Fabrication and characteristic analysis of High-Tc superconducting microstrip antennas using direct inset feeding technique (직접삽입 급전 방식을 이용한 고온초전도 마이크로스트립 안테나의 제작 및 특성 해석)

  • Chung, Dong-Chul;Han, Byoung-Sung;Kim, Jin;Ryu, Ki-Su;Hong, Suck-Yong;Lee, Jong-Ha
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.37 no.1
    • /
    • pp.70-78
    • /
    • 2000
  • In applying high-${\underline{T_c}}$ superconducting material to microwave devices, Uncertainty of electromagnetics of high-${\underline{T_c}}$ superconductor(HTS) and the temperature dependence of the substrate fits with HTS thin film cause difficulty in realization of such antenna for industrial applications. It must be noted to characteristic the HTS antenna in contrast with normal conducting counterpart for this real application. In this paper, a comparative study between HTS microstrip antennas and gold antennas was reported in terms of the return loss, the characteristic impedance, efficiency, and other various characteristics. HTS thin films were $YBa_2Cu_3O_{7-x}$ (YBCO) on MgO substrates. Superconducting microstrip antennas used in this work were to directly inset a microstrip transmission line into the 50 ${\Omega}$ region of the radiating patch. Measurement results of HTS antennas and gold antennas showed that usable antennas can be made using this architecture.

  • PDF

The Study of Color and Hardness of TiN Thin Film by UBM Sputtering System (UBM Sputtering System에 의한 TiN막의 색상과 경도에 관한 연구)

  • Park, Moon Chan;Lee, Jong Geun;Joo, Kyung Bok
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.14 no.1
    • /
    • pp.57-62
    • /
    • 2009
  • Purpose: TiN films were deposited on sus304 by unbalanced magnetron sputtering system which was designed and developed as unbalancing the strength of the magnets in the magnetron electrode. The color and hardness of deposited TiN films was investigated. Methods: The cross sections of deposited films on silicon wafer were observed by SEM to measure the thickness of the films, the components of the surface of the films were identified by XPS, the components of the inner parts of the films were observed by XPS depth profiling. XPS high resolution scans and curve fittings of deposited films were performed for quantitative chemical analysis, Vickers micro hardness measurements of deposited films were performed with a nano indenter equipment. Results: The colors of deposited films gradually changed from light gold to dark gold, light violet, and indigo color with increasing of the thickness. It could be seen that the color change come from the composite change of three compound,$TiO_{x}N_{y}$, $TiO_2$, TiN. Especially, the composite change of$TiO_{x}N_{y}$ compound was thought to affect the color change with respect to thickness. Conclusions: Deposited films had lower than the value of general TiN film in Vickers hardness, which was caused by mixing three TiN, $TiO_2$,$TiO_{x}N_{y}$ compound in the deposited films. The increasing and decreasing of micro hardness with respect to thickness was thought to have something to do with the composite of TiN in the films.

  • PDF

A Study on the Rate of Occurrence according to Watering Methods, Susceptibility and Chemical Control of Chrysanthemum Nematode (국화잎 선충에 대한 저항성 검정, 관수방법에 따른 국화잎선충의 피해율 및 화학적 방제에 관한 연구)

  • Kim, Young Jin;Choi, Young Eoun
    • Current Research on Agriculture and Life Sciences
    • /
    • v.5
    • /
    • pp.106-111
    • /
    • 1987
  • The susceptibility of 8 chrysanthemum varieties to Apelenchoides ritzemabosi, Shuhonothikara and Sagakiku were resistant by 11.7% and 14.5% each infested leaf, Sinrokusiogio, Dangonanako and Sintoa were susceptible as above 50%, Gold wave and Tenju were modertae by 24 to 26%. Percentage of infested leaf was positively correlated with the number of epidermal hair but not with leaf area, leaf thickness, stomatal size, number of stomata and length of epidermal hair. In effect of watering method, Polyethylene film cover plot was lowest by 9.4%, next conventional watering plot by 50%, Conventional watering and spray plot was the highest by 62%. The infested leaf rate was closely related with a number of rainy days than the amount of rainfall. Effect of chemical soil treatment, Temik showed the lowest infested leaf rate by 5%. There was no significant difference between the chemicals except Temik, but these are markedly effective in compare to control.

  • PDF

Performance of Pentacene-based Thin-film Transistors Fabricated at Different Deposition Rates (증착 속도에 따른 펜타센 박막 트랜지스터의 성능 연구)

  • Hwang, Jinho;Kim, Duri;Kim, Meenwoo;Lee, Hanju;Babajanyan, Arsen;Odabashyan, Levon;Baghdasaryan, Zhirayr;Lee, Kiejin;Cha, Deokjoon
    • New Physics: Sae Mulli
    • /
    • v.68 no.11
    • /
    • pp.1192-1195
    • /
    • 2018
  • We studied the electrical properties of organic thin-film transistors (OTFTs) fabricated at different deposition rates by measuring the field-effect mobility and the threshold voltages. As the active layer, pentacene thin film with a thickness of 50 nm was deposited at a rate of $0.05{\AA}/s$ to $1.14{\AA}/s$. The thickness of the drain-source gold electrode was 50 nm. The mobility was $1.9{\times}10^{-1}cm^2/V{\cdot}s$ at a deposition rate of $0.05{\AA}/s$, the mobility increased to $5.2{\times}10^{-1}cm^2/V{\cdot}s$ when the deposition rate was increased to $0.4{\AA}/s$, and then the mobility decreased to $6.5{\times}10^{-1}cm^2/V{\cdot}s$ when the deposition rate decreased to $1.14{\AA}/s$. Thus, the mobility of pentacene OTFTs was observed to depend on the thermal deposition rate.

CNT-PDMS Composite Thin-Film Transmitters for Highly Efficient Photoacoustic Energy Conversion

  • Song, Ju Ho;Heo, Jeongmin;Baac, Hyoung Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.297.2-297.2
    • /
    • 2016
  • Photoacoustic generation of ultrasound is an effective approach for development of high-frequency and high-amplitude ultrasound transmitters. This requires an efficient energy converter from optical input to acoustic output. For such photoacoustic conversion, various light-absorbing materials have been used such as metallic coating, dye-doped polymer composite, and nanostructure composite. These transmitters absorb laser pulses with 5-10 ns widths for generation of tens-of-MHz frequency ultrasound. The short optical pulse leads to rapid heating of the irradiated region and therefore fast thermal expansion before significant heat diffusion occurs to the surrounding. In this purpose, nanocomposite thin films containing gold nanoparticles, carbon nanotubes (CNTs), or carbon nanofibers have been recently proposed for high optical absorption, efficient thermoacosutic transfer, and mechanical robustness. These properties are necessary to produce a high-amplitude ultrasonic output under a low-energy optical input. Here, we investigate carbon nanotube (CNT)-polydimethylsiloxane (PDMS) composite transmitters and their nanostructure-originated characteristics enabling extraordinary energy conversion. We explain a thermoelastic energy conversion mechanism within the nanocomposite and examine nanostructures by using a scanning electron microscopy. Then, we measure laser-induced damage threshold of the transmitters against pulsed laser ablation. Particularly, laser-induced damage threshold has been largely overlooked so far in the development of photoacoustic transmitters. Higher damage threshold means that transmitters can withstand optical irradiation with higher laser energy and produce higher pressure output proportional to such optical input. We discuss an optimal design of CNT-PDMS composite transmitter for high-amplitude pressure generation (e.g. focused ultrasound transmitter) useful for therapeutic applications. It is fabricated using a focal structure (spherically concave substrate) that is coated with a CNT-PDMS composite layer. We also introduce some application examples of the high-amplitude focused transmitter based on the CNT-PDMS composite film.

  • PDF

Speedy Two-Step Thermal Evaporation Process for Gold Electrode in a Perovskite Solar Cell

  • Kim, Kwangbae;Park, Taeyeul;Song, Ohsung
    • Korean Journal of Materials Research
    • /
    • v.28 no.4
    • /
    • pp.235-240
    • /
    • 2018
  • We propose a speedy two-step deposit process to form an Au electrode on hole transport layer(HTL) without any damage using a general thermal evaporator in a perovskite solar cell(PSC). An Au electrode with a thickness of 70 nm was prepared with one-step and two-step processes using a general thermal evaporator with a 30 cm source-substrate distance and $6.0{\times}10^{-6}$ torr vacuum. The one-step process deposits the Au film with the desirable thickness through a source power of 60 and 100 W at a time. The two-step process deposits a 7 nm-thick buffer layer with source power of 60, 70, and 80 W, and then deposits the remaining film thickness at higher source power of 80, 90, and 100 W. The photovoltaic properties and microstructure of these PSC devices with a glass/FTO/$TiO_2$/perovskite/HTL/Au electrode were measured by a solar simulator and field emission scanning electron microscope. The one-step process showed a low depo-temperature of $88.5^{\circ}C$ with a long deposition time of 90 minutes at 60 W. It showed a high depo-temperature of $135.4^{\circ}C$ with a short deposition time of 8 minutes at 100 W. All the samples showed an ECE lower than 2.8 % due to damage on the HTL. The two-step process offered an ECE higher than 6.25 % without HTL damage through a deposition temperature lower than $88^{\circ}C$ and a short deposition time within 20 minutes in general. Therefore, the proposed two-step process is favorable to produce an Au electrode layer for the PSC device with a general thermal evaporator.

Effects of Process Induced Damages on Organic Gate Dielectrics of Organic Thin-Film Transistors

  • Kim, Doo-Hyun;Kim, D.W.;Kim, K.S.;Moon, J.S.;KIM, H.J.;Kim, D.C.;Oh, K.S.;Lee, B.J.;You, S.J.;Choi, S.W.;Park, Y.C.;Kim, B.S.;Shin, J.H.;Kim, Y.M.;Shin, S.S.;Hong, Mun-Pyo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1220-1224
    • /
    • 2007
  • The effects of plasma damages to the organic thin film transistor (OTFT) during the fabrication process are investigated; metal deposition process on the organic gate insulator by plasma sputtering mainly generates the process induced damages of bottom contact structured OTFTs. For this study, various deposition methods (thermal evaporation, plasma sputtering, and neutral beam based sputtering) and metals (gold and Indium-Tin Oxide) have been tested for their damage effects onto the Poly 4-vinylphenol(PVP) layer surface as an organic gate insulator. The surface damages are estimated by measuring surface energies and grain shapes of organic semiconductor on the gate insulator. Unlike thermal evaporation and neutral beam based sputtering, conventional plasma sputtering process induces serious damages onto the organic surface as increasing surface energy, decreasing grain sizes, and degrading TFT performance.

  • PDF

Plasmonic Nanosheet towards Biosensing Applications

  • Tamada, Kaoru
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.105-106
    • /
    • 2013
  • Surface plasmon resonance (SPR) is classified into the propagating surface plasmon (PSP) excited on flat metal surfaces and the local surface plasmon (LSP) excited by metalnanoparticles. It is known that fluorescence signals are enhanced by these two SPR-fields.On the other hand, fluorescence is quenched by the energy transfer to metal (FRET). Bothphenomena are controlled by the distance between dyes and metals, and the degree offluorescence enhancement is determined by the correlation. In this study, we determined thecondition to achieve the maximum fluorescence enhancement by adjusting the distance of ametal nanoparticle 2D sheet and a quantum dots 2D sheet by the use of $SiO_2$ spacer layers. The 2D sheets consisting of myristate-capped Ag nanoparticles (AgMy nanosheets) wereprepared at the air-water interface and transferred onto hydrophobized gold thin films basedon the Langmuir-Schaefer (LS) method [1]. The $SiO_2$ sputtered films with different thickness (0~100 nm) were deposited on the AgMy nanosheet as an insulator. TOPO-cappedCdSe/CdZnS/ZnS quantum dots (QDs, ${\lambda}Ex=638nm$) [2] were also transferred onto the $SiO_2$ films by the LS method. The layered structure is schematically shown in Fig. 1. The result of fluorescence measurement is shown in Fig. 2. Without the $SiO_2$ layer, the fluorescence intensity of the layered QD film was lower than that of the original QDs layer, i.e., the quenching by FRET was predominant. When the $SiO_2$ thickness was increased, the fluorescence intensity of the layered QD film was higher than that of the original QDs layer, i.e., the SPR enhancement was predominant. The fluorescence intensity was maximal at the $SiO_2$ thickness of 20 nm, particularly when the LSPR absorption wavelength (${\lambda}=480nm$) was utilized for the excitation. This plasmonic nanosheet can be integrated intogreen or bio-devices as the creation point ofenhanced LSPR field.

  • PDF