• Title/Summary/Keyword: Gold electrodes

Search Result 150, Processing Time 0.023 seconds

Improved Electrical Properties of Graphene Transparent Conducting Films Via Gold Doping

  • Kim, Yoo-Seok;Song, Woo-Seok;Kim, Sung-Hwan;Jeon, Cheol-Ho;Lee, Seung-Youb;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.388-388
    • /
    • 2011
  • Graphene, with its unique physical and structural properties, has recently become a proving ground for various physical phenomena, and is a promising candidate for a variety of electronic device and flexible display applications. The physical properties of graphene depend directly on the thickness. These properties lead to the possibility of its application in high-performance transparent conducting films (TCFs). Compared to indium tin oxide (ITO) electrodes, which have a typical sheet resistance of ~60 ${\Omega}/sq$ and ~85% transmittance in the visible range, the chemical vapor deposition (CVD) synthesized graphene electrodes have a higher transmittance in the visible to IR region and are more robust under bending. Nevertheless, the lowest sheet resistance of the currently available CVD graphene electrodes is higher than that of ITO. Here, we report an ingenious strategy, irradiation of MeV electron beam (e-beam) at room temperature under ambient condition,for obtaining size-homogeneous gold nanoparticle decorated on graphene. The nano-particlization promoted by MeV e-beam irradiation was investigated by transmission electron microscopy, electron energy loss spectroscopy elemental mapping, and energy dispersive X-ray spectroscopy. These results clearly revealed that gold nanoparticle with 10~15 nm in mean size were decorated along the surface of the graphene after 1.0 MeV-e-beam irradiation. The fabrication high-performance TCF with optimized doping condition showed a sheet resistance of ~150 ${\Omega}/sq$ at 94% transmittance. A chemical transformation and charge transfer for the metal gold nanoparticle were systematically explored by X-ray photoelectron spectroscopy and Raman spectroscopy. This approach advances the numerous applications of graphene films as transparent conducting electrodes.

  • PDF

A Nickel Nanowire Diluter Operating through the Principle of the Dielectrophoretic Attraction Force (유전영동을 이용하는 니켈 나노와이어 희석기)

  • Yang, Jin-Ho;Yoon, Hyeun-Joong;Yang, Eui-Hyeok;Yang, Sang-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.385-389
    • /
    • 2010
  • This paper presents a microfabricated nanowire diluter which dilutes the concentration of nanowires in solution instead of by the conventional centrifuge process. The device has 16 pairs of gold electrodes in a micro channel composed of a glass substrate and PDMS. We prepared nickel nanowires by the template-directed electrodeposition method using nanoporous anodized aluminum template (AAO). We injected the Dimethylformamide (DMF) solution containing nanowires into the inlet of the diluter while applying square wave voltages on the electrodes to trap the nanowires at the subsequent gold electrodes by means of dielectrophoretic attraction forces. The concentration of nanowires at the outlet of the micro channel was changed as we expected, which illustrates that the device can effectively dilute nanowires and can be applied to a controlled assembly of nanowires.

A Study on Surface Modification of Nanorod Electrodes for Highly Sensitive Nano-biosensor (고감도 나노-바이오센서를 위한 나노로드 전극 표면 개질에 관한 연구)

  • Lee, Seung Jun
    • Applied Chemistry for Engineering
    • /
    • v.27 no.2
    • /
    • pp.185-189
    • /
    • 2016
  • Among many kinds of bioaffinity sensors, the avidin-biotin system has been widely used in a variety of biological applications due to the specific and high affinity interaction of the system. In this work, gold nanorods with high surface area were explored as electrodes in order to amplify the signal response from the avidin-biotin interaction which can be further utilized for avidin-biotin biosensors. Electrochemical performance of electrodes modified with nanorods and functionalized with avidin in response to interactions with biotin at various concentrations using $[Fe(CN)_6]^{3-/4-}$ couple as the redox probe were investigated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). A very low biotin concentration of less than 1 ng/mL could be detected using the electrodes modified with nanorods.

In-situ EQCM Study on Growth of Polypyrrole Films Using Gold Electrodes Modified with Self-Assembled Monolayers in an Aqueous Solution (자기 집합 단분자막 개질 금 전극을 이용한 수용액 중 폴리피를 성장에 관한 In-situ EQCM 연구)

  • Seo, Kyoung--Ja;Jeon, Il-Cheol
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.3
    • /
    • pp.143-152
    • /
    • 2002
  • The growth of Polypyrrole film has been investigated during electropolymerization in an aqueous solution on bare and SAM modified gold electrodes by in-situ EQCM and ex-situ AFM. According to the result of cyclic voltammetry measurements, in the case of a bare gold electrode, the electrochemical deposition of polypyrrole were dependent on the limiting oxidative potential, but not on scan numbers. When the limiting potential higher than 0.8 V was applied on the electrode, the amount of polypyrrole deposited on a gold electrode was rapidly increased and the abnormal mass change attributed to the rearrangement of polypyrrole films was observed as the scan number increased. The polypyrrole film Prepared on electrodes modified with 1-dodecanethiol SAM or thiophene SAM grew 3-dimensionally with the rearrangement of film. However, in the case of BPUS SAM, 2-dimensional layer-by-layer growth of film was observed without the rearrangement of film. AFM images showed films with chain-shaped and/ or donut-shaped polymers when grown rapidly and a wrinkled film at the steady state condition.

Voltammetric Behaviors of Chemically Modified Electrodes Based on Zirconium Phosphonate Film

  • 홍훈기
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.9
    • /
    • pp.886-891
    • /
    • 1995
  • Electroactive monolayers based on zirconium(Ⅳ) phosphonate film were prepared on gold and tin oxide electrodes by sequential layer-by-layer depostion technique. High transfer coefficient values and surface coverages of surface bound redox molecules were obtained from the electrochemical measurements of heterogeneous electron transfer rates for monolayer modified electrodes. 1,10-Decanediylbis(phosphonic acid) (DBPA) monolayer as insulating barrier was effective in blocking electron transfer. However, these film modified oxide electrode shows voltammetric behavior of diffusion/permeation process taking place at very small exposed area of modified electrode through channels due to structural defects within film when a very fast redox couple such as Ru(NH3)63+ is hired.

Influence of Source/Drain Electrodes on the Properties of Zinc Tin Oxide Transparent Thin Film Transistors (Zinc Tin Oxide 투명 박막트랜지스터의 특성에 미치는 소스/드레인 전극의 영향)

  • Ma, Tae Young;Cho, Mu Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.7
    • /
    • pp.433-438
    • /
    • 2015
  • Zinc tin oxide transparent thin film transistors (ZTO TTFTs) were fabricated by using $n^+$ Si wafers as gate electrodes. Indium (In), aluminum (Al), indium tin oxide (ITO), silver (Ag), and gold (Au) were employed for source and drain electrodes, and the mobility and the threshold voltage of ZTO TTFTs were observed as a function of electrode. The ZTO TTFTs adopting In as electrodes showed the highest mobility and the lowest threshold voltage. It was shown that Ag and Au are not suitable for the electrodes of ZTO TTFTs. As the results of this study, it is considered that the interface properties of electrode/ZTO are more influential in the properties of ZTO TTFTs than the conductivity of electrode.

Electrochemistry and Leaching Kinetics of Gold-Silver Alloys in Cyanide Solutions

  • Guan, Y.Charles;Sun, Xiaowei;Han, Kenneth N.
    • Resources Recycling
    • /
    • v.10 no.1
    • /
    • pp.42-48
    • /
    • 2001
  • The dissolution behavior of gold and silver from gold-silver alloys in aerated cyanide solutions has been investigated by an electrochemical means as well as a direct measurement of gold and silver ions reported in the bulk solution as a function of time using rotating disc electrodes. The variables studied included oxygen partial pressure, rotating speed of the disc, concentration of cyanide, temperature and composition of the allyos. The dissolution potential and the rate of dissolution were obtained in view of the anodic and cathodic current-potential relationships. The results were discussed in terms of the mixed potential theory. The results showed that the dissolution rate of gold and silver from the alloys was controlled partially by chemical reaction. but largely by transport of either oxygen or cyanide, depending on their relative concentration under the experimental conditions employed in this study.

  • PDF

Fabrication of Electrochemical Sensor with Tunable Electrode Distance

  • Yi, Yu-Heon;Park, Je-Kyun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.1
    • /
    • pp.30-37
    • /
    • 2005
  • We present an air bridge type electrode system with tunable electrode distance for detecting electroactive biomolecules. It is known that the narrower gap between electrode fingers, the higher sensitivity in IDA (interdigitated array) electrode. In previous researches on IDA electrode, narrower patterning required much precise and expensive equipment as the gap goes down to nanometer scale. In this paper, an improved method is suggested to replace nano gap pattering with downsizing electrode distance and showed that the patterning can be replaced by thickness control using metal deposition methods, such as electroplating or metal sputtering. The air bridge type electrode was completed by the following procedures: gold patterning for lower electrode, copper electroplating, gold deposition for upper electrode, photoresist patterning for gold film support, and copper etching for space formation. The thickness of copper electroplating is the distance between upper and lower electrodes. Because the growth rate of electroplating is $0.5{\mu}m\;min^{-1}$, the distance is tunable up to hundreds of nanometers. Completed electrodes on the same wafer had $5{\mu}m$ electrode distance. The gaps between fingers are 10, 20, 30, and $40{\mu}m$ and the widths of fingers are 10, 20, 30, 40, and $50{\mu}m$. The air bridge type electrode system showed better sensitivity than planar electrode.

A Study on an Electrical Biosignal Detection System for the Microbiochip (마이크로바이오칩의 전기신호검출 시스템에 관한 연구)

  • Park Jeong Yeon;Park Jae Jun;Kwon Ki Hwan;Cho Nahm Gyoo;Ahn Yoo Min;Lee Seoung Hwan;Hwang Seung Yong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.4
    • /
    • pp.181-187
    • /
    • 2005
  • In this study, a microchip system fabricated with MEMS technology was developed to detect bioelectrical signals. The developed microchip using the conductivity of gold nanoparticles could detect the biopotential with a high sensitivity. For designing the microchip, simulations were performed to understand the effects of the size and number of nanoparticles, and the sensing width between electrodes on the detection of biosignals. Then, a series of experiment was performed to validate the simulation results and understand the feasibility of the proposed microchip design. Both simulation and experimental results showed that as the sensing width between electrodes increased the conductivity decreased. Also, the conductivity increased as the density of gold nanoparticles increased. In addition, it was found that the conductivity that changes with the nanoparticles density could be approximated by a cumulative normal distribution function. The developed microchip system could effectively apply when a biosignals should be measured with a high sensitivity.