• Title/Summary/Keyword: Goat Milk

Search Result 138, Processing Time 0.02 seconds

Galactooligosaccharide and Sialyllactose Content in Commercial Lactose Powders from Goat and Cow Milk

  • Kim, Hyo-Hee;Yun, Sung-Seob;Oh, Chang-Hwan;Yoon, Sung-Sik
    • Food Science of Animal Resources
    • /
    • v.35 no.4
    • /
    • pp.572-576
    • /
    • 2015
  • The most commonly used infant formulas contain lactose originating from cow milk. Goat milk has recently been claimed to be nutritionally more effective for infants than other milks. In baby foods, much emphasis is placed on the concentrations of intestinal microflora-promoting oligosaccharides, which are generally transferred into lactose from milk during crystallization process. Here we show that higher level of free sialic acid is present in goat lactose powder compared to cow lactose powder. Without proteinase K treatment, the amount of 3-sialyllactose and 6-sialyllactose were similar in goat and cow lactose powders. However, after proteolysis, 6-sialyllactose was present at higher levels in goat than in cow lactose powder. Galactooligosaccharides, a group of prebiotics, are present in milk in the form of glycoproteins. Galactooligosaccharide content was also higher in goat lactose powder than in cow lactose powder.

Characteristics of Cow Milk and Goat Milk Yogurts Fermented by Streptococcus thermophilus LFG Isolated from Kefir (Kefir에서 분리한 Streptococcus thermophilus LFG를 이용한 우유 및 산양유 요구르트의 품질 특성)

  • Lim, Young-Soon;Lee, Si-Kyung
    • Food Science of Animal Resources
    • /
    • v.33 no.6
    • /
    • pp.787-795
    • /
    • 2013
  • This study was carried out to investigate the characteristics of goat and cow milk yogurts containing high-exopolysaccharide fermented by Streptoccous thermophilus LFG isolated from kefir. The pH of cow milk yogurt was higher than that of goat milk yogurt. The contents of lactic acid was greater in goat milk yogurt (743.9-1043.8 mg/100 g) than in cow milk yogurt (441.6-709.9 mg/100 g). The numbers of survival lactic acid bacteria were the greatest in goat milk yogurt fermented by Str. thermophilus LFG. Viscosity was greater in cow and goat milk yogurts cultured by Str. thermophilus LFG than in yogurts by Str. thermophilus TH3. Syneresis of yogurt fermented by Str. thermophilus LFG was 9.6-16.1% and 28.2-31.8% in yogurt fermented by Str. thermophilus TH3 after 10 d storage at $4^{\circ}C$. Flavor compounds identified from goat milk were acetone, ethylbutanoate, ethyl-3-methylbutyrate, ethyl-2-butenoate and ethylhexanoate, and those from cow milk were ethylbutanoate, acetone, 2-heptanone and acetoin. Flavor compounds detected from goat milk and cow milk yogurts were acetic acid, butanoic acid, butanol, diethylcarbinol, acetone, diacetyl, decane, 2-methyl-3-pentanone, hexanal, 2-heptanone, acetoin, benzaldehyde, dimethyldisulfide, and dimethyltrisulfide. In sensory evaluation, overall preference and texture values were higher in goat milk yogurt fermented by Str. thermophilus LFG than in cow milk yogurts and the yogurt fermented by mixed culture resulted in the highest score.

Non-Pathogenic Factors Affecting Somatic Cell Counts of Goat Milk (산양유의 체세포수에 영향을 미치는 비병원성 요인)

  • Kim, Min-Kyung;Choi, A-Ri;Han, Gi-Sung;Jeong, Seok-Geun;Oh, Mi-Hwa;Jang, Ae-Ra;Seol, Kuk-Hwan;Ham, Jun-Sang
    • Journal of Dairy Science and Biotechnology
    • /
    • v.28 no.2
    • /
    • pp.1-5
    • /
    • 2010
  • Somatic cell counts (SCCs) of goat milk can vary widely depending on the counting methods used and non-pathogenic factors; the goat milk industry can be threatened by establishment of a legal standard based on the findings in cow milk. In Korea, SCCs have been excluded from the items that are analyzed under the "Livestock Products Processing and Composition Standards" in accordance with a recent NVRQS Notice amendment. From April to October, SCCs of 150 goat milk samples from 2 farms were analyzed using a Somascope calibrated with standard goat milk samples. Average SCCs of the samples was 598,000/mL, and significant differences were not found between farms and between breeds. SCCs increased from 3 to 8 months after delivery.

  • PDF

Angiotensin-I-Converting Enzyme Inhibitory Peptides in Goat Milk Fermented by Lactic Acid Bacteria Isolated from Fermented Food and Breast Milk

  • Rubak, Yuliana Tandi;Nuraida, Lilis;Iswantini, Dyah;Prangdimurti, Endang
    • Food Science of Animal Resources
    • /
    • v.42 no.1
    • /
    • pp.46-60
    • /
    • 2022
  • In this study, angiotensin-I-converting enzyme inhibitory (ACEI) activity was evaluated in fermented goat milk fermented by lactic acid bacteria (LAB) from fermented foods and breast milk. Furthermore, the potential for ACEI peptides was identified in fermented goat milk with the highest ACEI activity. The proteolytic specificity of LAB was also evaluated. The 2% isolate was inoculated into reconstituted goat milk (11%, w/v), then incubated at 37℃ until pH 4.6 was reached. The supernatant produced by centrifugation was analyzed for ACEI activity and total peptide. Viable cell counts of LAB and titratable acidity were also evaluated after fermentation. Peptide identification was carried out using nano liquid chromatography mass spectrometry (LC-MS/MS), and potential as an ACEI peptide was carried out based on a literature review. The result revealed that ACEI activity was produced in all samples (20.44%-60.33%). Fermented goat milk of Lc. lactis ssp. lactis BD17 produced the highest ACEI activity (60.33%; IC50 0.297±0.10 mg/mL) after 48 h incubation, viable cell counts >8 Log CFU/mL, and peptide content of 4.037±0.27/mL. A total of 261 peptides were released, predominantly derived from casein (93%). The proteolytic specificity of Lc. lactis ssp. lactis BD17 through cleavage on the amino acid tyrosine, leucine, glutamic acid, and proline. A total of 21 peptides were identified as ACEI peptides. This study showed that one of the isolates from fermented food, namely Lc. lactis ssp. lactis BD17, has the potential as a starter culture for the production of fermented goat milk which has functional properties as a source of antihypertensive peptides.

Dairy goat production in sub-Saharan Africa: current status, constraints and prospects for research and development

  • Kahi, Alexander K.;Wasike, Chrilukovian B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.8_spc
    • /
    • pp.1266-1274
    • /
    • 2019
  • This paper presents a review of dairy goat production in sub-Saharan Africa (SSA) from 2010- 2017, its current state, constraints and prospects for research and development. Since the introduction of dairy goats in SSA in pre-colonial times, their populations have continued to increase due to declining land size as a result of land fragmentation and increasing demand for goat milk. The current goat population in SSA is 372,716,040 head of which only 15.98% used for milk production. Populations in the Eastern and Western regions of SSA have shown an increasing trend from 2010 to 2017. The Southern Africa goat population is on the decline at an annual rate of about 1.77% whereas Central Africa has had a constant goat population within the same period. Eastern Africa reported the highest increase in the population of goats used for milk production. Milk production was highest in Eastern Africa and lowest in Southern Africa. However, dairy goat productivity remained constant in the Eastern region throughout the review period. Dairy goats are mainly raised under smallholder mixed crop-livestock systems. To enhance the development of the dairy goat, concerted efforts should be made to alleviate the constraints that stifle its growth. These constraints can be categorized into nutrition and feeding, breeding and reproduction, diseases, parasites, climate change, and underdeveloped dairy goat products market. Effective management of dairy goats requires a holistic approach and there is the need to expand the markets by further sensitization on the nutritional and medicinal advantages of dairy goat products. In order to achieve rapid development in the dairy goat sub sector, research and development initiatives should be directed towards alleviating the hurdles in nutrition and feeding, breeding, animal health and resilience as well as dairy goat markets.

Effect of supplementary glycerin on milk composition and heat stability in dairy goats

  • Thoh, Deela;Pakdeechanuan, Patcharin;Chanjula, Pin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.12
    • /
    • pp.1711-1717
    • /
    • 2017
  • Objective: This experiment was studied the effects of various levels of crude glycerin (CG) in dairy goat diet on daily intake, milk yield, milk composition, some physical properties and some quality changes of goat milk after sterilization. Methods: Twelve 75% Saanen dairy goats (body weight = $49{\pm}3kg$; days in milk = $60{\pm}12d$) were randomly assigned in a completely randomized design to evaluate the effects of three experimental diets consisting of 0%, 5%, and 10% CG (dry matter basis) which were formulated to meet or exceed the nutrient requirements of goats. Experimental dairy goats were evaluated for feed and milk yield. Milk samples were analyzed for their composition, including fatty acids, casein profile, fat globule size, and color, and were sterilized to evaluate milk heat stability. Results: There were no significant differences between 0% and 5% CG treatments infeed. Increasing CG supplementation from 0% to 5% increased milk yield from $2.38{\pm}0.12$ to $2.64{\pm}0.23kg/goat/d$. In addition, milk samples from 5% CG treatment had the highest total solids, fat content and lactose content, and largest fat globule size. Increasing CG to 10% resulted in a decrease in milk fat. After sterilizing at $116^{\circ}C$, $F_0=3min$, goat milk samples from 5% CG treatment had slightly higher sediment content and comparatively higher degree of browning. Conclusion: Considering milk yield, milk fat content and quality of sterilized milk, 5% CG supplementation in a total mixed ration has a potential for implementation in dairy goats.

Current status, challenges and the way forward for dairy goat production in Asia - conference summary of dairy goats in Asia

  • Liang, Juan Boo;Paengkoum, Pramote
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.8_spc
    • /
    • pp.1233-1243
    • /
    • 2019
  • Asia hosts more than half of the world's 1 billion goats and is also where domestication of wild goats began. Goats, including dairy goats, are adapted to a wide variety of harsh environments and thus play key roles as providers of nutrition, food security and socio-economic status to their human owners in many low-income Asian countries. In many countries in Southeast and East Asia, medium and large scale commercial dairy goat farming can be profitable enterprises because of the high price of goat milk, and good demand due to its health and medicinal properties. In some Asian countries, dairy goats play important roles in non-commercial activities, including use as educational animals in elementary schools in Japan and show animals in Indonesia. Dairy goat farmers in Asia are faced with numerous challenges, such as a shortage of high producing animals adapted to the local environment, lack of quality feeds during a prolonged dry season, many diseases and difficulty getting their product to market, however, the increasing demand for goat milk in the newly developed and developed economies in Asia provides an optimistic future for dairy goat production in this region.

Physico-Chemical Characteristics of Mongolian Goat, Sheep and Cow Milk

  • Chuluunbat, Tsend-Ayush;Yoon, Yoh-Chang;Kim, Soo Yeon
    • Journal of Dairy Science and Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.93-98
    • /
    • 2013
  • For purposes of substantiation of organizing measures on industrial processing of goat's and sheep's milk in Mongolia and the production of dairy products we have conducted the studied physico-chemical characteristics of the Mongolian goat's and sheep's milks especially to recognize amino acids, minerals and vitamins in the milk and compare with the Mongolian cow's milk. And also was studied fractional structure of goat's milk whey proteins.

  • PDF

Current status, challenges and the way forward for dairy goat production in Europe

  • Morales, Francisco de Asis Ruiz;Genis, Jose Maria Castel;Guerrero, Yolanda Mena
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.8_spc
    • /
    • pp.1256-1265
    • /
    • 2019
  • The aim of this review is to show the evolution of the dairy goat sector in Europe from all perspectives. Starting from the current situation, the challenges and future potential of this livestock system are presented, as well as strategies to overcome the difficulties faced. Europe holds 1.9% of the world goat population and produces 15.1% of goat milk recorded worldwide. The goat species plays a fundamental economic, social and environmental role in many regions of Europe. The wide diversity of production systems and autochthonous breeds makes the sector very heterogeneous. In order to improve viability, a number of strategies need to be adopted to solve the current problems such as a low profitability, absence of generational change and a little or no recognition of the social and environmental role of the sector. Some strategies to improve the situation of the European goat sector include: i) generating market value that will recognise the diversity of the dairy goat sector (breeds, feeding models, derived products${\ldots}$); ii) promoting and raising awareness of the functional attributes of goat milk and derived products so as to increase consumption; iii) assigning an economic value to environmental and social functions; iv) improving working conditions through technological innovation to make goat farming more attractive to young people; and v) processing more milk into cheese or other dairy products in production areas.

Hydrolysis by Alcalase Improves Hypoallergenic Properties of Goat Milk Protein

  • Jung, Tae-Hwan;Yun, Sung-Seob;Lee, Won-Jae;Kim, Jin-Wook;Ha, Ho-Kyung;Yoo, Michelle;Hwang, Hyo-Jeong;Jeon, Woo-Min;Han, Kyoung-Sik
    • Food Science of Animal Resources
    • /
    • v.36 no.4
    • /
    • pp.516-522
    • /
    • 2016
  • Goat milk is highly nutritious and is consumed in many countries, but the development of functional foods from goat milk has been slow compared to that for other types of milk. The aim of this study was to develop a goat milk protein hydrolysate (GMPH) with enhanced digestibility and better hypoallergenic properties in comparison with other protein sources such as ovalbumin and soy protein. Goat milk protein was digested with four commercial food-grade proteases (separately) under various conditions to achieve the best hydrolysis of αs -casein and β-lactoglobulin. It was shown that treatment with alcalase (0.4%, 60℃ for 30 min) effectively degraded these two proteins, as determined by SDS-PAGE, measurement of nonprotein nitrogen content, and reverse-phase high-performance liquid chromatography. Hydrolysis with alcalase resulted in a significant decrease in β-lactoglobulin concentration (almost to nil) and a ~40% reduction in the level of αs-casein. Quantification of histamine and TNF-α released from HMC-1 cells (human mast cell line) showed that the GMPH did not induce an allergic response when compared to the control. Hence, the GMPH may be useful for development of novel foods for infants, the elderly, and convalescent patients, to replace cow milk.