• Title/Summary/Keyword: GnRH (gonadotropin-releasing hormone)

Search Result 130, Processing Time 0.028 seconds

Autocrine Regulation of Gonadotropin-releasing Hormone (GnRH) Operates at Multiple Control levels of GnRH Gene Expression in GT1-1 Neuronal Cells

  • Jin Han;Sehyung Cho;Woong Sun;Kyungjin Kim
    • Animal cells and systems
    • /
    • v.2 no.4
    • /
    • pp.483-488
    • /
    • 1998
  • We previously found that a potent gonadotropin-releasing hormone (GnRH) agonist, buserelin, decreases GnRH promoter activity together with GnRH mRNA level, providing evidence for an autoregulatory mechanism operating at the level of GnRH gene transcription in immortalized GT1-1 neuronal cells. To examine whether agonist-induced decrease in GnRH mRNA level requires the continuous presence of buserelin, we performed a pulse-chase experiment of buserelin treatment. Short-term exposure (15 min) of GT1-1 neuronal cells to buserelin ($10{\mu}M$) was able to decrease GnRH mRNA levels when determined 24 h later. When GT1-1 cells were treated with buserelin ( $10{\mu}M$) for 30 min and then incubated for 1, 3, 6, 12, 24, and 48 h after buserelin removal, a significant decrease in GnRH mRNA levels was observed after the 12 h incubation period. These data indicate that inhibitory signaling upon buserelin treatment may occur rapidly, but requires a long time (at least 12 h) to significantly decrease the GnRH mRNA level. To examine the possible involvement of de novo synthesis and/or mRNA stability in buserelin-induced decrease in GnRH gene expression, actinomycin D ($5{\mu}m/ml$), a potent RNA synthesis blocker, was co-treated with buserelin. Actinomycin D alone failed to alter basal GnRH mRNA Revel, but blocked the buserelin-induced decrease in GnRH mRNA level at 12 h of post-treatment. These data suggest that buserelin may exert its inhibitory action by altering the stability of GnRH mRNA. Moreover, a polvsomal RNA separation by sucrose gradient centrifugation demonstrated that buserelin decreased the translational efficiency of the transcribed GnRH mRNA. Taken together, these results clearly indicate that GnRH agonist buserelin acts as an inhibitory signal at multiple levels such as transcription mRNA stability, and translation.

  • PDF

Induced Ovulation in the Mandarin Fish, Siniperca scherzeri by Sex-Maturation Hormones (성성숙 호르몬 처리에 의한 쏘가리의 배란 유도)

  • 장선일;이완옥;이종윤;손송정
    • Journal of Aquaculture
    • /
    • v.11 no.4
    • /
    • pp.513-519
    • /
    • 1998
  • Ovulation of maturing femal mandarin fish, Siniperca scherzeri was induced using single injection of human chorionic gonadotropin (HCG) or gonadotropin releasing hormone-analogue (GnRH-a), GnRH-a plus prostaglandin F2 (PG$F_2$) or GnRH-a plus pimozide. The response was evaluated by fertilization, embryo-formation and hatching rate after insemination. Those rates were generally higher in GnRH-a group than in HCG group. The higher hatching rat of above 89% was achived using a dosage of 5,000 IU/kg HCG plus 10 ${\mu}$g/kg GnRH-a, 10${\mu}$g/kg GnRH-a plus 500 ng/kg PGF2, and 10 ug/kg GnRH-a plus 1-5 mg/kg pimozide. Ovulation was induced in all female injected with sex-maturation hormones and stimulator, but blocked in female injected with HCG plus GnRH-a plus dopamine combination, and GnRH-a plus PGF2 plus indometacin combination. These results show that the mandarin fish in spawning period secrete a sex-mutruation assosiated hormones and gonadotropin-releasing -inhibiting factor(GRIF).

  • PDF

Gonadotropin-releasing Hormone and Its Receptor as a Therapeutic Concept in the Progression of Epithelial Ovarian Cancer

  • Kim, Ki-Yon;Choi, Kyung-Chul
    • Journal of Embryo Transfer
    • /
    • v.24 no.1
    • /
    • pp.1-14
    • /
    • 2009
  • Ovarian cancer is a significant cause of cancer-related death in women, but the main biological causes remain open questions. Hormonal factors have been considered to be an important determinant causing ovarian cancer. Recent studies have shown that gonadotropin-releasing hormone (GnRH)-I and its analogs have clinically therapeutic value in the treatment of ovarian cancer. In addition, numerous studies have shown that the potential of GnRH-II in normal reproductive system or reproductive disorder. GnRH-I receptors have been detected in approximately 80% of ovarian cancer biopsy specimens as well as normal ovarian epithelial cells and immortalized ovarian surface epithelium cells. GnRH-II receptors have also been found to be more widely expressed than GnRH-I receptors in mammals, suggesting that GnRH receptors may have additional functions in reproductive system including ovarian cancer. The signal transduction pathway following the binding of GnRH to GnRH receptor has been extensively studied. The activation of protein kinase A/C (PKA/PKC) pathway is involved in the GnRH-I induced anti-proliferative effect in ovarian cancer cells. In addition, GnRH-I induced mitogen-activated protein kinase (MAPK) activation plays a role in anti-proliferative effect and apoptosis in ovarian cancer cells and the activation of transcriptional factors related to cellular responses. However, the role of GnRH-I and II receptors, there are discrepancies between previous reports. In this review, the role of GnRH in ovarian cancer and the mechanisms to induce anti-proliferation were evaluated.

Neuroanatomical Localization of Cells Containing Gonadotropin Releasing Hormone mRNA in the Brain of Frog, Rana dvbowskii, by in situ Hybridization (In situ hybridization법에 의한 북방산개구리 뇌에서 GnRH mRNA를 함유한 세포의 분포 연구)

  • 최완성;김정우
    • The Korean Journal of Zoology
    • /
    • v.37 no.3
    • /
    • pp.304-310
    • /
    • 1994
  • Using in situ hybridization, we have mapped the anatomical localization of perikarya containing myNA that codes for sonadotropin releasing hormone (GnRH) in the brains of female frogs, R. dybowskii. DNA olisomers, with sequences complementary to the GnRH portion of pro-GnRH myNA sequence, were synthesized and hybridized to paraformaldehvde-fixed, sagittal sections of the whole brain stem. The distribution of the GnRH mRNA containing cell bodies was similar to that described for GnRH peptide by immunohistochemistrv. That is, cells containing GnRH mRNA were observed in the medial septal area, anterior preoptic area, ventromedial hvpothalamus and infundibular regions. However, another cell groups which contains GnRH mRNAs were also detected by in situ hybridization in the bed nucleus of hippocampal commissure, preoptic area, nucleus infundibularis dorsalis, mesencephalic nuclei and intermediolateral cell column of spinal cord areas. These results demonstrate the feasibility of using in situ hybridization as a strategy to study the distribution of GnRH neurons and the detection of GnRH gene expression in the vertebrates.

  • PDF

The Cellular Localization of GnRH and LHR in Aged Female Mice

  • Kim, Young-Jong;Park, Byung-Joon;Lee, Won-Jae;Kim, Seung-Joon
    • Journal of Embryo Transfer
    • /
    • v.33 no.4
    • /
    • pp.305-311
    • /
    • 2018
  • Gonadotropin releasing hormone (GnRH) centrally plays a role in control of the hypothalamic-pituitary-gonadal axis-related hormone secretions in the reproductive neuroendocrine system. In addition, hormone receptors like luteinizing hormone receptor (LHR) are important element for hormones to take effect in target organ. However, ageing-dependent changes in terms of the distribution of GnRH neurons in the brain and LHR expression in the acyclic ovary have not been fully understood yet. Therefore, we comparatively investigated those ageing-dependent changes using young (1-5 months), middle (11-14 months) and old (21-27 months) aged female mice. Whereas a number of GnRH positive fibers and neurons with monopolar or bipolar morphology were abundantly observed in the brain of the young and middle aged mice, a few GnRH positive neurons with multiple dendrites were observed in the old aged mice. In addition, acyclic ovary without repeated development and degeneration of the follicles was shown in the old aged mice than others. LHR expression was localized in theca cells, granulosa cell, corpora lutea and atretic follicle in the ovaries from young and middle aged mice, in contrast, old aged mice had few positive LHR expression on the follicles due to acyclic ovary. However, the whole protein level of LHR was higher in the ovary of old aged mice than others. These results are expected to be used as an important basis on the relationship between GnRH and LHR in old aged animals as well as in further research for reproduction failure.

Complex Korean Medicine Therapy for Hypoestrogenic Side Effects of Gonadotropin Releasing Hormone Agonist Administration to Postoperative Endometriosis Patient: A Case Report (자궁내막증 수술 후 GnRH-agonist 투여 중인 환자의 저에스트로겐 부작용에 대한 복합 한의 치료: 증례보고)

  • Park, Hye-Rin;Jo, Hee-Geun;Jo, Hyun-Jeong;Choi, Ji-Hyun
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.31 no.4
    • /
    • pp.188-196
    • /
    • 2018
  • Objectives: This study is to report the clinical effectiveness of the complex Korean medicine therapy on a postoperative endometriosis patient's hypoestrogenic side effects who is treated with GnRH-agonist injection. Methods: The patient in this case was diagnosed with endometriosis and has been treated with GnRH-a injection after laparoscopic operation. The patient complained hot flash and sweating mainly after GnRH-a treatment. The patient received complex Korean medicine therapy during 10 days admission period. The clinical effects were evaluated through KI (Kupperman's Index) and SF-36 (36 item Short Form Health Survey). Results: After the complex Korean medicine therapy, the various clinical symptoms including hot flash and sweating were improved. Also, the quality of life was enhanced. Conclusions: This case report shows that the complex Korean medicine therapy was effective for treating hypoestrogenic side effects occurred after GnRH-a treatment in postoperative endometriosis patient.

Immunocontraceptive Effects in Male Rats Vaccinated with Gonadotropin-Releasing Hormone-I and -II Protein Complex

  • Kim, Yong-Hyun;Park, Byung-Joo;Ahn, Hee-Seop;Han, Sang-Hoon;Go, Hyeon-Jeong;Lee, Joong-Bok;Park, Seung-Yong;Song, Chang-Seon;Lee, Sang-Won;Choi, In-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.4
    • /
    • pp.658-664
    • /
    • 2019
  • Immunocontraception has been suggested as an optimal alternative to surgical contraception in animal species. Many immunocontraceptive vaccines have been designed to artificially produce antibodies against gonadotropin-releasing hormone-I (GnRH-I) which remove GnRH-I from the vaccinated animals. A deficiency of GnRH-I thereafter leads to a lack of gonadotropins, resulting in immunocontraception. In this study, we initially developed three immunocontraceptive vaccines composed of GnRH-I, GnRH-II, and a GnRH-I and -II (GnRH-I+II) complex, conjugated to the external domain of Salmonella Typhimurium flagellin. As the GnRH-I+II vaccine induced significantly (p < 0.01) higher levels of anti-GnRH-I antibodies than the other two vaccines, we further evaluated its immunocontraceptive effects in male rats. Mean testis weight in rats (n = 6) inoculated twice with the GnRH-I+II vaccine at 2-week intervals was significantly (p < 0.01) lower than in negative control rats at 10 weeks of age. Among the six vaccinated rats, two were non-responders whose testes were not significantly reduced when compared to those of negative control rats. Significantly smaller testis weight (p < 0.001), higher anti-GnRH-I antibody levels (p < 0.001), and lower testosterone levels (p < 0.001) were seen in the remaining four responders compared to the negative control rats at the end of the experiments. Furthermore, seminiferous tubule atrophy and spermatogenesis arrest were found in the testis tissues of responders. Therefore, the newly developed GnRH-I+II vaccine efficiently induced immunocontraception in male rats. This vaccine can potentially also be applied for birth control in other animal species.

A Case of Catamenial Hemoptysis treated successfully with Gonadotropin-releasing Hormone (GnRH) Analogue (Gonadotropin-releasing Hormone (GnRH) Analogue로 치유된 Catamenial Hemoptysis 1예)

  • Kim, Dae-Han;Suh, Yo-Ahn;Kim, Sang-IL;Choi, Kui-Sung;Son, Hyun-Bae;Kwon, Yoong-Ju;Kim, Sung-Ho;Kim, Cheol-Hyeon;Lee, Jae-Cheol
    • Tuberculosis and Respiratory Diseases
    • /
    • v.53 no.3
    • /
    • pp.349-353
    • /
    • 2002
  • Catamenial hemoptysis is syndrome characterized by bleeding from the bronchial trees and lungs that occurs synchronously with the female menstrual cycle. Etiologic mechanism of pulmonary endometriosis is still controversial, and the diagnosis is usually made on the basis of the clinical history and exclusion of other causes of recurrent hemoptysis. Serial computed tomograms of the chest during and in the interval between menstruations have been proved to be a useful confirmatory test. We experienced a 33-year-old female patient who had been previously diagnosed as pelvic endometriosis pathologically, experienced cyclic hemoptysis during menstruations. The diagnosis of pulmonary endometriosis was made based on her history and changes in the character of the lesions as documented on radiologic studies of the chest. She was treated successfully with GnRH analogue and there is no evidence of recurrence.