• Title/Summary/Keyword: Glyptotendipes tokunagai

Search Result 3, Processing Time 0.019 seconds

Expression of Heat Shock Protein 70 Gene and Body Color Changes in Non-biting Midge Larvae (Glyptotendipes tokunagai) Effected by O3 Treatment (오존(O3) 노출에 의한 조각깔따구(Glyptotendipes tokunagai)의 체색 변화 및 heat shock protein 70 발현 변화)

  • Kim, Won-Seok;Choi, Bohyung;Kim, Moon-Kyung;Chae, Seon Ha;Kwak, Ihn-Sil
    • Korean Journal of Ecology and Environment
    • /
    • v.53 no.4
    • /
    • pp.324-330
    • /
    • 2020
  • Ozone (O3) is a general disinfectant to remove micro-pollutants in water treatment system. Previous studies have reported effect of ozone to bacteria and pathogens removal, but its effect to the relatively large organisms has little known. In this study, we investigated potential effects of ozone toxicity to the non-bite midge larvae (Glyptotendipes tokunagai) with accumulate mortality, coloration change and expression of heat shock protein 70 (HSP70). The accumulate mortality rate of G. tokunagai increased in a dose-time dependent manner and the highest mortality rate was observed to 75% at 30 minute of exposure duration with 2.0 ppm of ozone concentration. Exposure to ozone was a factor increasing body color of the larvae. The tendency of HSP70 mRNA expression showed up-regulation in ozone exposure at 20 minute. After that time, the expression of HSP70 in exposed group decreased to a similar level of control group. Our results clearly showed that ozone toxicity affects physical and molecular activity of G. tokunagai, implying the potential hazardous of ozone in the aquatic ecosystem including macroinvertebrates.

Size-dependent toxicity of silver nanoparticles to Glyptotendipes tokunagai

  • Choi, Seona;Kim, Soyoun;Bae, Yeon-Jae;Park, June-Woo;Jung, Jinho
    • Environmental Analysis Health and Toxicology
    • /
    • v.30
    • /
    • pp.3.1-3.6
    • /
    • 2015
  • Objectives This study aims to evaluate the size-dependent toxicity of spherical silver nanoparticles (Ag NPs) to an endemic benthic organism, Glyptotendipes tokunagai. Methods Ag nanoparticles of three nominal sizes (50, 100, and 150 nm) capped with polyvinyl pyrrolidone (PVP-Ag NPs) were used. Their physicochemical properties, acute toxicity (48 hours), and bioaccumulation were measured using third instar larvae of G. tokunagai. Results The aggregation and dissolution of PVP-Ag NPs increased with exposure time and concentration, respectively, particularly for 50 nm PVP-Ag NPs. However, the dissolved concentration of Ag ions was not significant compared with the median lethal concentration value for $AgNO_3$ (3.51 mg/L). The acute toxicity of PVP-Ag NPs was highest for the smallest particles (50 nm), whereas bioaccumulation was greatest for the largest particles (150 nm). However, larger PVP-Ag NPs were absorbed and excreted rapidly, resulting in shorter stays in G. tokunagai than the smaller ones. Conclusions The size of PVP-Ag NPs significantly affects their acute toxicity to G. tokunagai. In particular, smaller PVP-Ag NPs have a higher solubility and stay longer in the body of G. tokunagai, resulting in higher toxicity than larger PVP-Ag NPs.

Seasonal Prevalence and Integrated Control Method of Insect Pests in the Dredged Soil Dumping Area in Masan, Korea (마산시 준설토 투기장에서 발생하는 유해곤충의 계절적 발생 소장과 통합적 저감방법)

  • Kim, Yong-Ki;Lee, Cheol-Min;Bae, Yang-Seop
    • Journal of Wetlands Research
    • /
    • v.14 no.4
    • /
    • pp.687-698
    • /
    • 2012
  • This study was conducted to monitor and prevent outbreak of insect pestsin dredged soil dumping area after completion of dredging construction in Masan City. Monitoring was carried out using tent trap, colored sticky trap, and CDC light trap. A total of 217,073 individuals belonging to 23 species from 10 families in 3 orders were collected. In overwintering survey using tent trap, 3 species were collected. 2 species (Leptocera fuscipennis (Haliday) and Ephydra japonica Miyagi) of them were outbreak species. In color sticky trap, more than 96% of total individuals were comprised of five species: Urolepis maritima Walker (43%), E. japonica (19%), Fucellia sp. 1 (13%), Philotelma sp. 1 (10%), and Homalometopus sp. 1 (9%). In CDC light trap, three dominant species were Homalometopus sp. 1 (91%), Glyptotendipes tokunagai Sasa (6%), and L. fuscipennis (1%), representing about 98% of the total. To prevent damage caused by outbreak of insect pests, we carried out ecological control methods such as covering the fresh soil in outbreak area, using light trap, pumping up water and so on, minimizing use of thermal fogging and insect growth regulatorwhen the insect pest population was rapidly increasing.