• Title/Summary/Keyword: Glycyrrhizin extract

Search Result 43, Processing Time 0.034 seconds

A Study on the Pharmacetical Characteristics & Analysis of Glycyrrhizin Extract (감초 추출물의 약리적 특성 및 분석)

  • Sung, Ki-Chun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.215-222
    • /
    • 2006
  • From experiment results on pharmacetical characteristics and analysis of Glycyrrhizin extract, some conclusions are obtained as follows. From results on extract experiment of Glycyrrhizin, it appeared about 8%-extraction ratio as semi-solid state, and after dried in freezing from Glycyrrhizin extract of semi-solid state, it obtained about 70%-Glycyrrhizin extract as solid state of yellow gold color. From results on antimicrobial experiment of Glycyrrhizin extract, number of S-typhimurium and Fungus in microbe decreased more and more according to time passage. This phenomenon shows that Glycyrrhizin extract keeps antimicrobial effect. From results on antioxidation experiment of Glycyrrhizin extract, DPPH scavenging activity of free radical shows that Glycyrrhizin extract appears more remarkable reduction ability than reference samples. This phenomenon means that antioxidation of Glycyrrhizin extract appears higher than Vitamin-C and BHA. From results on instrument analysis, the fatty and aromatic components of 2-pentanone, cyclohexasiloxane, tetrasiloxane, benzoquinoline-2-carboxylic acid etcs from Glycyrrhizin extract was detected with GC/MS and inorganic components of Ca, Mg, Ti, Zn, Fe etcs from Glycyrrhizin extract was detected with ICP/OES.

Inhibitory Effect of Licorice Ethanol Extracts and Glycyrrhizin on Cytochrome P450 Drug-Metabolizing Enzymes in Human Liver Microsomes (감초 물 추출물 및 Glycyrrhizin이 인체 간 Microsome에서 Cytochrome P450 약물대사효소에 미치는 영향)

  • Park Jong-Hoon;Park Ji-Young;Ju Young-Sung
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.7 no.2
    • /
    • pp.65-74
    • /
    • 2003
  • Objective : The aim of present study is to evaluate the inhibitory potential of licorice extract and glycyrrhizin on cytochrome P450(CYP) in human liver microsomes. Methods : Using human liver microsomes, water extract of licorice and glycyrrhizin as an inhibitor were co-incubated with each probe drug representing selective CYP isoform activity. We measured relative metabolic activity in incubation condition compared to that with no extract of licorice using HPLC system. Results : Both water extracts of licorice and glycyrrhizin showed inhibitory effect on CYP-catalyzed reactions. CYP2C19 $(IC_{50}=126.7{\mu}g/ml)$ is most potently inhibited by water extract than other tested CYP isoforms$(IC_{50}>450{\mu}g/ml)$, but glycyrrhizin exhibited potent inhibition on CYP1A2$(IC_{50}=106.9{\mu}g/ml)$ followed by CYP2C9 and CYP2D6. Conclusion: These results indicate that water extract of licorice and glycyrrhizin have inhibitory potential on CYP-catalyzed reaction in human liver microsomes. But the mechanism of inhibition was slightly different between them Water extract of licorice mainly inhibited CYP2C19, and glycyrrhizin primarily inhibited CYP1A2. The inhibition by water extract of licorice and glycyrrhizin on CYP isoforms may cause drug interaction with co-administered drug leading to toxicity or treatment failure.

  • PDF

Biological Activities in roots of Glycyrrhiza uralensis Fisch (감초 세근의 생리활성 탐색)

  • Chung, Woo-Teak;Lee, Seo-Ho;Cha, Moon-Suk;Sung, Nak-Sul;Hwang, Baek;Lee, Hyeon-Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.9 no.1
    • /
    • pp.45-54
    • /
    • 2001
  • The biological activities of ethanol, ethanol: water(1 : 1v/v) and water extracts from Glycyrrhiza uralensis Fisch, glycyrrhizin and enzymatically hydrolyzed glycyrrhizin were compared. About 50% of the growth of MCF7, A549, Hep3B and AGS cells were inhibited in adding 1.0 g/L of the crude extracts, glycyrrhizin and enzymatically hydrolyzed glycyrrhizin. For example, the ethanol extract inhibited 76%, 66% in MCF7 and Hep3B cells by adding 1.0 g/L. For cytotoxicity on human normal liver cell(WRL-68), the crude extracts were scored as above 26%. For the result of antimutagenecity using CHO V79 cell, the crude extracts proved more effective than other samples. The growth of human immune B and T cells were enhanced up to $1.2{\sim}1.3$ times by adding the crude extracts. In inhibitory effect of ${\alpha}-glucosidase$ activity was showed that the ethanol extract, water extract and ethanol: water (1 : 1v/v) extract were appeared 65%, 68%, 62% in adding 1.0 g/L. The higher enhancement of glutathione -S-transferase activity was observed in the ethanol extract as 257% compared to the control in adding 1.0 g/L. From the results, the biological activities of the crude extracts were equivalent or higher than glycyrrhizin and enzymatically hydrolyzed glycyrrhizin.

  • PDF

The Extract of the Glycyrrhizin from Glycyrrhizae Radix and Antibacterial Activity of the Treated Fabrics (감초로 부터 글리시리진의 추출 및 직물의 항균성)

  • Lee, Young-Sook;Jang, Jeong-Dae
    • Fashion & Textile Research Journal
    • /
    • v.15 no.2
    • /
    • pp.286-293
    • /
    • 2013
  • This study investigates the attachment of glycyrrhizin to fabric using an X-ray photoelectron spectrophotometer( XPS). XPS spectra analysis showed that carbon content on treated fabrics with 0.2% glycyrrhizin increased to 2.699% for silk, 2.829% for nylon, 1.505% for cotton, respectively. The results show that glycyrrhizin is absorbed on treated fabrics. The glycyrrhizin extraction method makes radix glycyrrhizae powder 10g treat the first and the second treatment with ethanol, remove impurities on $75^{\circ}C$; subsequently, it is treated for 10 hours with ethanol 75% on $85^{\circ}C$ and lyophilizated. As the result, glycyrrhizin is extracted 1.7g in GL-I, 1.1 g in GL-II. As the result of abstracting glycyrrhizin with two methods, pure glycyrrhizin was abstracted 45.9% in GL-I, 74.9% in GL-II. GL-I, GL-II; in addition, glycyrrhizin( Japan) on TLC plate was separated in Rf 0.6. By GL-II extract method, this experiment obtained glycyrrhizin 15 g treated in a bath ratio set to 1: 100. Silk fabric was treated at $80^{\circ}C$, 60 min. in, nylon fabric $10^{\circ}C$, 70 min., and cotton fabric $30^{\circ}C$, 80 min.; subsequently, silk, nylon, cotton fabrics showed a 99.9% antibacterial activity for Staphylococcus aureus and Klebsiella pneumoniae.

Metabolism of Glycyrrhizin in Polyprescriptions Containing Glycyrrhizae Radix by Human Intestinal Bacteria and Their Inhibitory Effects on Some Enzymes (감초 함유 처방의 글리치리진 대사와 몇가지 효소저해효과)

  • Kim, Nam-Jae;Bae, Eun-Ah;Han, Myung-Joo;Kim, Dong-Hyun
    • Korean Journal of Pharmacognosy
    • /
    • v.30 no.3
    • /
    • pp.269-274
    • /
    • 1999
  • To analyze scientifically the prescription principle of polyprescriptions (Gamchotang, Daewhanggamchotang, Jakyakgamchotang, Gamchogungangtang and Gilkyungtang) containing Glycyrrhizae Radix, the transforming rate of glycyrrhizin in these polyprescriptions to 18 ${\beta}-glycyrrhetinic$ acid and their inhibitory effect on ${\beta}-glucuronidase$, hyaluronidase, phosphodiesterase and trypsin were investigated. When Glycyrrhizae Radix containing polyprescriptions were extracted with water, the contents of glycyrrhizin in water extract of Glycyrrhizae Radix with Rhei Rhizoma or with Zingiberis Rhizoma were higher than that of Glycyrrhizae Radix only, but that in water extract of Glycyrrhizae Radix with Platicodi Radix was lower than that of Glycyrrhizae Radix only. By human intestinal bacteria, glycyrrhizin was metabolized to 18 ${\beta}-glycyrrhetinic$ acid. These metabolism of glycyrrhizin in polyprescriptions containing Glycyrrhizae Radix was inhibited by Rhei Rhizoma, Paeoniae Radix and Platicodi Radix, but was not affected by Zingiberis Rhizoma. The inhibitory activity of Glycyrrhizae Radix on hyaluronidase and ${\beta}-glucuronidase$, was synergistic with Rhei Rhizoma or Zingiberis Rhizoma, but was antagonistic by Platicodi Radix.

  • PDF

Component Characteristics of Each Extract Prepared by Different Extract Methods from By-products of Glycyrrhizia uralensis (추출 조건을 달리한 감초부산물 추출물의 성분 특성)

  • 강명화;박춘근;차문석;성낙술;정혜경;이제봉
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.30 no.1
    • /
    • pp.138-142
    • /
    • 2001
  • Solid contents, free sugars, phenlic compounds and glycyrrhizin of extracts obtained from by-products of Glycyrrhizia uralensis by three different methods, i.e., shaking, heating, and static methods, were determined. Solid contents of extracts obtained by shaking, heating and static method were 15.6%, 15.0% and 5.3%, respectively. Phenolic compound contents of them were 11.33 mg/100 mL, 11.21 mg/100mL and 10.15 mg/100 mL. Main free sugars in the extracts from the by-products of G. uralensis were fructose, glucose, sucrose, and maltose. Glycyrrhizin content of the extracts from the by-products of G. uralensis were 2.79%, 3.54% and 0.63%, respectively. Extract obtained by the shaking methods had an ability of donating electron to DPPH. The relative antioxidant effects of th extract obtained from the shaking method showed 70% inhibitory effect of peroxidation on egg yolk lecithin.

  • PDF

Studies on Licorice in Drug Preparations(I) Determination of Glycyrrhizin and Glycyrrhetinic acid by HPLC. (생약중의 감초에 관한 연구(I) HPLC에 의한 Glycyrrhizin 및 Glycyrrhetinic acid의 정량)

  • 백남호;박만기;박정일;김중선;서정진
    • YAKHAK HOEJI
    • /
    • v.25 no.1
    • /
    • pp.1-7
    • /
    • 1981
  • Glycyrrhizin (GA) content in licorice was determined by a couple of methods using HPLC, respectively. In Method(I), GA content itself was determined from the licorice aqueous extract, while in Method (II) glycyrrhetinic acid (GHeA ; the aglicone of GA) content corresponding to the quantity of GA was measured from the chloroform extract of the hydrolyzed product of licorice aqueous extract. A reverse phase column Hibar Lichrosorb RP-18 (E. Merck) was used as the stationary phase. As the mobile phase MeOH: $H_{2}O$(0.05M-$NaH_{2}PO_{4}$)=58 : 42 solution in Method (I), and MeOH: $H_{2}O $: AcOH=78; 19: 3 solution in Method (II) were suitable, respectively. The value obtained by Method (II) appeared slightly higher than that by Method (I). The effect of some other herbal drugs on the assay of GA quantity in mixed sample was also observed in both above two methods. By Method (I) Cassiae Cortex, Rehmaniae Rhizoma, Paeoniae Radix, and Angelicae Radix gave the subtractive effect on the amount of GA compared with the value from licorice alone. In the case of Method (II) Cassiae Cortex and Rehmaniae Rhizoma appeared to have subtractive effect but Paeoniae Radix and Angelicae Radix scarcely showed any influence. Pachymae Fungus did not affect the GA content at all. It seems that glycyrrhizin in licorice interacts with certain components of other herbal drugs.

  • PDF

The Effects of Licorice Fraction and Glycyrrhizin on Prostaglandin Synthetase Activity of Bull Seminal Vesicle (감초의 분획과 Glycyrrhizin이 황소정랑의 Prostaglandin Synthetase활성에 미치는 효과)

  • Joe, Young-Sun;Kim, Nak-Doo;Ko, Kwang-Ho
    • Korean Journal of Pharmacognosy
    • /
    • v.17 no.2
    • /
    • pp.107-112
    • /
    • 1986
  • The investigation aimed to study the effects of methanol fraction of licorice (FM 100) and glycyrrhizin on prostaglandin synthetase activity, in relation to their analgesic effects. Effects of FM 100 and glycyrrhizin on the activity of prostaglandin synthetase extracted from bull seminal vesicles were examined by the modified method of Takeguchi et al. The analgesic effect of FM 100 was tested in mice by the acetic acid writhing method. FM 100 was administered orally to mice. BSV prostaglandin synthetase activity was inhibited significantly by FM 100 in a dose-dependent manner, whereas the activity was slightly inhibited by glycyrrhizin. Statistically significant analgesic effects were also observed with FM 100. The results suggest that analgesic effect of licorice may be due to the inhibition of prostaglandin synthesis.

  • PDF

Effect of Glycyrrhizae Radix on the Expression of UDP-Glucuronosyltransferase-1A1 (UGT1A1) in Rat Liver

  • Moon, A-Ree;Lee, Song-Deuk
    • Biomolecules & Therapeutics
    • /
    • v.4 no.3
    • /
    • pp.280-284
    • /
    • 1996
  • Licorice has been widely used in combination with other herbs or synthetic drugs for various disorders. In an effort to study the effect of licorice roots (Glycyrrhizae Radix, GR) and glycyrrhizin on the hepatic glucuronidation, we have previously found that the pretreatment of GR or glycyrrhizin for 6 days resulted in a marked increase in the enzymatic activity of 3-methylcholanthrene (3-MC)-inducible hepatic UDP-glucuronosyltransferase (UGT) isozyme that has high affinity toward phenolic substrates (p-nitrophenol form, UGTIA) in Sprague-Dawley rats. As an approach to elucidate the mechanism for the enzyme activation by licorice in rat liver, we examined the levels of hepatocellular mRNAs for UGTIA upon the treatment of GR or glycyrrhizin. The hepatic mRNAs were extracted from Sprague-Dawley rats and Wistar rats after the treatment of the methanol extract of GR (1 g/kg, p.o.), glycyrrhizin (23 mg/kg, p.o.) for 6 days, or 3-MC (40 mg/kg, i.p.) for 3 days. Using the UGT1A1 CDNA as a probe, we found that the mRNAs for the enzyme were induced by 3-MC treatment while those were influenced neither by GR nor by glycyrrhizin in both strains of rats. These results indicate that the activation of rat liver UGTI A by licorice and glycyrrhizin was not due to the induction of mRNAs for the enzyme.

  • PDF

Streptococcus LJ-22, a human intestinal bacterium, transformed glycyrrhizin to 18$\beta$-glycyrrhetinic acid monoglucuronide

  • Kim, Dong-Hyun;Lee, Seoung-Won;Park, Hae-Young;Han, Myung-Joo
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1998.11a
    • /
    • pp.125-125
    • /
    • 1998
  • Glycyrrhizin (18$\beta$-glycyrrhetic acid $\beta$-D-glucuronyl a-D-glucuronic acid, GL), a main component of liquore extract (Glycyrrhiza glabra), is ingested orally as a component in the oriental medicine. By human intestinal bacteria, glycyrrhizin (18$\beta$-glycyrrhetinic acid $\beta$-D-glucuronyl a-D-glucuronic acid, GL) was metabolized to glycyrrhetinic acid (GA): main pathway metabolizing GL to GA by glucuronidases of Bacteroides J-37 (Kim et al., 1997) and Eubacterium sp strain GLH (Akao et al., 1987) and minor pathway metabolizing GL to GA via 18$\beta$-glycyrrhetic acid D-glucuronic acid (GAMG) by $\beta$-glucuronidase of Streptococcus LJ-22 and glucuronidases of Bacteroides J-37 / E. coli. $\beta$-Glucuronidase from Streptococcus LJ-22 hydrolyzed GL to GAMG, not GA. $\beta$-Glucuronidase of Streptococcus LJ-22 hydrolyzed $\beta$-glucuronic acid conjugates of polysaccharides rather than aglycone-$\beta$-glucuronides Optimal pH of Streptococcus LJ-22 $\beta$-glucuronidase was 5-6 and its molecular weight was 250 kDaltons. Km for GL was 0.37mM.

  • PDF