• Title/Summary/Keyword: Glycosyl hydrolase family 5

Search Result 44, Processing Time 0.025 seconds

Classification and Characteristics of Chitin/Chitosan Hydrolases (키틴/키토산 가수분해효소의 분류 및 특성)

  • Lee, Han-Seung
    • Journal of Life Science
    • /
    • v.18 no.11
    • /
    • pp.1617-1624
    • /
    • 2008
  • Chitin and chitosan, which is deacetylated form of chitin, are one of the most abundant biomass on the earth. They showed various biological activities including antimicrobial activity, heavy metal chelating, immune system activation, and have very diverse applications in food, pharmaceutical, medicinal, and environmental industry. There have been reported many chitin/chitosan-hydrolyzing enzymes, their structures and genes from three domains, archaea, bacteria, and eukarya. Carbohydrate hydrolyzing enzymes are classified in CAZy (Carbohydrate Active Enzymes) database according to their amino acid sequence similarity. Interestingly, chitinases and chitosanases are classified in various glycosyl hydrolase(GH) families, GH2, GH5, GH7, GH8, GH18, GH19, GH20, GH46, GH48, GH73, GH75, GH80, GH84, and GH85. Here, we review characteristics and structures of chitin/chitosan hydrolyzing enzymes according to glycosyl hydrolase families in order to provide information about gene mining.

Identification and Characterization of Glycosyl hydrolase family genes from the Earthworm (지렁이의 Gycosyl hydrolasse family 유전자들의 동정과 특성에 관한 연구)

  • Lee, Myung Sik;Tak, Eun Sik;Ahn, Chi Hyun;Park, Soon Cheol
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.4
    • /
    • pp.48-58
    • /
    • 2009
  • Glycosyl hydrolases (GH, EC 3.2.1.-) are key enzymes which can hydrolyze the glycosidic bonds between two or more carbohydrates, or between a carbohydrate and a non-carbohydrate moiety. The new enzyme nomenclature of glycoside hydrolases is based on their amino acid sequence similarity and structural features. Here, we examined the glycosyl hydrolase family(GHF) genes reported from earthworm species. Among overall 115 GHFs, 12 GHFs could be identified from earthworm species through CAZy database. Of 12 GHF group genes, five genes including GHF2, 5, 17, 18, 20 are thought to be potent for industrial applications. The alignment of these genes with same genes from other animal species exhibited high sequence homology and some important amino acid residues necessary for enzyme activity appeared to be conserved. These genes can be utilized as a pest control agent or applicable to the food industry, clinical therapeutics and organic wastes disposition.

  • PDF

Screening and Characterization of an Enzyme with ${\beta}-Glucosidase$ Activity from Environmental DNA

  • Kim, Soo-Jin;Lee, Chang-Muk;Kim, Min-Young;Yeo, Yun-Soo;Yoon, Sang-Hong;Kang, Han-Cheol;Koo, Bon-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.905-912
    • /
    • 2007
  • A novel ${\beta}-glucosidase$ gene, bglA, was isolated from uncultured soil bacteria and characterized. Using genomic libraries constructed from soil DNA, a gene encoding a protein that hydrolyzes a fluorogenic analog of cellulose, 4-methylumbelliferyl ${\beta}-D-cellobioside$ (MUC), was isolated using a microtiter plate assay. The gene, bglA, was sequenced using a shotgun approach, and expressed in E. coli. The deduced 55-kDa amino acid sequence for bglA showed a 56% identity with the family 1 glycosyl hydrolase Chloroflexus aurantiacus. BglA included two conserved family 1 glycosyl hydrolase regions. When using $p-nitrophenyl-{\beta}-D-glucoside$ (pNPG) as the substrate, the maximum activity of the purified ${\beta}-glucosidase$ exhibited at pH 6.5 and $55^{\circ}C$, and was enhanced in the presence of $Mn^{2+}$. The $K_m\;and\;V_{max}$ values for the purified enzyme with pNPG were 0.16 mM and $19.10{\mu}mol/min$, respectively. The purified BglA enzyme hydrolyzed both pNPG and $p-nitrophenyl-{\beta}-D-fucoside$. The enzyme also exhibited substantial glycosyl hydrolase activities with natural glycosyl substrates, such as sophorose, cellobiose, cellotriose, cellotetraose, and cellopentaose, yet low hydrolytic activities with gentiobiose, salicin, and arbutin. Moreover, BglA was able to convert the major ginsenoside $Rb_1$ into the pharmaceutically active minor ginsenoside Rd within 24 h.

Cloning and Expression of A Bacillus licheniformis Cellulase Gene (Bacillus licheniformis WL-12의 cellulase 유전자 클로닝과 발현)

  • Yoon, Ki-Hong
    • Korean Journal of Microbiology
    • /
    • v.42 no.4
    • /
    • pp.313-318
    • /
    • 2006
  • A thermophilic bacterium producing the extracellular cellulase was isolated from soybean paste, and the isolate WL-12 has been identified as Bacillus licheniformis on the basis on its 16S rRNA sequence, morphology and biochemical properties. A gene encoding the cellulase of B. licheniformis WL-12 was cloned and its nucleotide sequence was determined. This cellulase gene, designated celA, consisted of 1,551 nucleotides, encoding a polypeptide of 517 amino acid residues. The gene product contained catalytic domain and cellulose binding domain. The deduced amino acid sequence was highly homologous to those of cellulases of B. licheniformis, B. subtilis and B. amytoliquefaciens belonging to the glycosyl hydrolase family 5. When the celA gene was highly expressed using a strong B. subtilis promoter, the extracellular cellulase was produced up to 7.0 units/ml in B. subtilis WB700.

Characterization of cell wall hydrolases induced by sugar starvation

  • Lee, Eun-Jeong;Koizumi, Nozomu
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2005.11a
    • /
    • pp.371-374
    • /
    • 2005
  • In our previous work in transcriptional regulation of sugar, expression of genes encoding putative glycosyl hydrolases in Arabidopsis was induced by sugar starvation. They were annotated as b-galactosidase (At5g56870), ${\beta}-xylosidase$ (At5g49360) and ${\beta}-glucosidase$ (At3g60140), which belong to glycosyl hydrolase family that has a catalytic domain of polysaccharides. From the primary structure of deduced amino acid sequence, they were predicted to localize to cell wall. Further investigation of these cell wall hydrolases implicated that cell wall polysaccharides provide metabolizable sugars to nutrient allocation under sugar starvation.

  • PDF

A Novel Glycosyl Hydrolase Family 16 β-Agarase from the Agar-Utilizing Marine Bacterium Gilvimarinus agarilyticus JEA5: the First Molecular and Biochemical Characterization of Agarase in Genus Gilvimarinus

  • Lee, Youngdeuk;Jo, Eunyoung;Lee, Yeon-Ju;Hettiarachchi, Sachithra Amarin;Park, Gun-Hoo;Lee, Su-Jin;Heo, Soo-Jin;Kang, Do-Hyung;Oh, Chulhong
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.5
    • /
    • pp.776-783
    • /
    • 2018
  • The agarase gene gaa16a was identified from a draft genome sequence of Gilvimarinus agarilyticus JEA5, an agar-utilizing marine bacterium. Recently, three agarase-producing bacteria, G. chinensis, G. polysaccharolyticus, and G. agarilyticus, in the genus Gilvimarinus were reported. However, there have been no reports of the molecular characteristics and biochemical properties of these agarases. In this study, we analyzed the molecular characteristics and biochemical properties of agarases in Gilvimarinus. Gaa16A comprised a 1,323-bp open reading frame encoding 441 amino acids. The predicted molecular mass and isoelectric point were 49 kDa and 4.9, respectively. The amino acid sequence of Gaa16A showed features typical of glycosyl hydrolase family 16 (GH16) ${\beta}$-agarases, including a GH16 domain, carbohydrate-binding region (RICIN domain), and signal peptide. Recombinant Gaa16A (excluding the signal peptide and carbohydrate-binding region, rGaa16A) was expressed as a fused protein with maltose-binding protein at its N-terminus in Escherichia coli. rGaa16A had maximum activity at $55^{\circ}C$ and pH 7.0 and 103 U/mg of specific activity in the presence of 2.5 mM $CaCl_2$. The enzyme hydrolyzed agarose to yield neoagarotetraose as the main product. This enzyme may be useful for industrial production of functional neoagaro-oligosaccharides.

Cloning and Characterization of Xylanase Gene from Paenibacillus woosongensis (Paenibacillus woosongensis의 Xylanase 유전자 클로닝과 특성분석)

  • Yoon, Ki-Hong
    • Korean Journal of Microbiology
    • /
    • v.48 no.2
    • /
    • pp.141-146
    • /
    • 2012
  • A gene encoding the xylanase (XynA) predicted from partial genomic sequence of Paenibacillus woosongensis was cloned into Escherichia coli by PCR. This xynA gene consisted of 633 nucleotides, encoding a polypeptide of 211 amino acid residues. The deduced amino acid sequence exhibited 85-89% identity with those of several Paenibacillus xylanases, belonging to the glycosyl hydrolase family 11. As a results of expression of the structural gene by T7 promoter of a pET23a(+) expression vector, xylanase activity was higher in cell-free extract than culture filtrate of a recombinant Escherichia coli BL21(DE3) CodonPlus. However, the expression level of xylanase was not sufficient be detected by SDS-PAGE. The cell-free extract showed maximal xylanase activity at $60^{\circ}C$ and pH 5.5. The predominant products resulting from xylan and xylooligosaccharide hydrolysis were xylose and xylotriose. The enzyme could hydrolyze xylooligosaccharides larger than xylbiose.

Molecular Cloning, Overexpression, and Enzymatic Characterization of Glycosyl Hydrolase Family 16 ${\beta}$-Agarase from Marine Bacterium Saccharophagus sp. AG21 in Escherichia coli

  • Lee, Youngdeuk;Oh, Chulhong;Zoysa, Mahanama De;Kim, Hyowon;Wickramaarachchi, Wickramaarachchige Don Niroshana;Whang, Ilson;Kang, Do-Hyung;Lee, Jehee
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.7
    • /
    • pp.913-922
    • /
    • 2013
  • An agar-degrading bacterium was isolated from red seaweed (Gelidium amansii) on a natural seawater agar plate, and identified as Saccharophagus sp. AG21. The ${\beta}$-agarase gene from Saccharophagus sp. AG21 (agy1) was screened by long and accurate (LA)-PCR. The predicted sequence has a 1,908 bp open reading frame encoding 636 amino acids (aa), and includes a glycosyl hydrolase family 16 (GH16) ${\beta}$-agarase module and two carbohydrate binding modules of family 6 (CBM6). The deduced aa sequence showed 93.7% and 84.9% similarity to ${\beta}$-agarase of Saccharophagus degradans and Microbulbifer agarilyticus, respectively. The mature agy1 was cloned and overexpressed as a His-tagged recombinant ${\beta}$-agarase (rAgy1) in Escherichia coli, and had a predicted molecular mass of 69 kDa and an isoelectric point of 4.5. rAgy1 showed optimum activity at $55^{\circ}C$ and pH 7.6, and had a specific activity of 85 U/mg. The rAgy1 activity was enhanced by $FeSO_4$ (40%), KCl (34%), and NaCl (34%), compared with the control. The newly identified rAgy1 is a ${\beta}$-agarase, which acts to degrade agarose to neoagarotetraose (NA4) and neoagarohexaose (NA6) and may be useful for applications in the cosmetics, food, bioethanol, and reagent industries.

Cloning and Characterization of endo-β-1,4-glucanase genes from the Midgut of the Earthworm, Eisenia andrei (지렁이 중장에서 발현되는 endo-β-1,4-glucanase 유전자들의 클로닝과 특성에 관한 연구)

  • Lee, Myung-Sik;Park, Sang-Kil;Tak, Eun-Sik;Ahn, Chi-Hyun;Kim, Hye-Ryung;Park, Soon-Cheol
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.15 no.3
    • /
    • pp.80-89
    • /
    • 2007
  • Two endogenous endo-${\beta}$-1,4-D-glucanase (EGase, EC 3.2.1.4) cDNAs were cloned from the midgut of the earthworm Eisenia anderi, and named EaEG2 and EaEG3, respectively. A sequence of 1,368 bp was determined and the coding region is composed of 456 amino acid residues including the initiation methionine. The N-terminal region of 20 residues in the deduced sequence was regarded as the signal peptide. These EGases belong to glycosyl hydrolase family 9 (GHF9) and showed high levels of identity(51-55%) with selected termite, cockroache, crayfish and mollusc EGases. The EGases of earthworm consist of three consensus catalytic domains found in most microbial cellulases. A phylogenetic tree was constructed using the deduced amino acid sequence data matched through the BLASTX program and showed that GHF9 families could be divided into five groups of arthropoda, bacteria, plant, annelida and mollusc.

  • PDF