• 제목/요약/키워드: Glycosphingolipids

검색결과 22건 처리시간 0.032초

Differential Expression Patterns of Gangliosides in the Ischemic Cerebral Cortex Produced by Middle Cerebral Artery Occlusion

  • Kwak, Dong Hoon;Kim, Sung Min;Lee, Dea Hoon;Kim, Ji Su;Kim, Sun Mi;Lee, Seo Ul;Jung, Kyu Yong;Seo, Byoung Boo;Choo, Young Kug
    • Molecules and Cells
    • /
    • 제20권3호
    • /
    • pp.354-360
    • /
    • 2005
  • Neuronal damage subsequent to transient cerebral ischemia is a multifactorial process involving several overlapping mechanisms. Gangliosides, sialic acid-conjugated glycosphingolipids, reduce the severity of acute brain damage in vitro. However their in vivo effects on the cerebral cortex damaged by ischemic infarct are unknown. To assess the possible protective role of gangliosides we examined their expression in the cerebral cortex damaged by ischemic infarct in the rat. Ischemia was induced by middle cerebral artery (MCA) occlusion, and the resulting damage was observed by staining with 2, 3, 5-triphenylterazolium chloride (TTC). High-performance thin-layer chromatography (HPTLC) showed that gangliosides GM3 and GM1 increased in the damaged cerebral cortex, and immunofluorescence microscopy also revealed a significant change in expression of GM1. In addition, in situ hybridization demonstrated an increase in the mRNA for ganglioside GM3 synthase. These results suggest that gangliosides GM1 and GM3 may be synthesized in vivo to protect the cerebral cortex from ischemic damage.

Role of gangliosides in the differentiation of human mesenchymal-derived stem cells into osteoblasts and neuronal cells

  • Moussavou, Ghislain;Kwak, Dong Hoon;Lim, Malg-Um;Kim, Ji-Su;Kim, Sun-Uk;Chang, Kyu-Tae;Choo, Young-Kug
    • BMB Reports
    • /
    • 제46권11호
    • /
    • pp.527-532
    • /
    • 2013
  • Gangliosides are complex glycosphingolipids that are the major component of cytoplasmic cell membranes, and play a role in the control of biological processes. Human mesenchymal stem cells (hMSCs) have received considerable attention as alternative sources of adult stem cells because of their potential to differentiate into multiple cell lineages. In this study, we focus on various functional roles of gangliosides in the differentiation of hMSCs into osteoblasts or neuronal cells. A relationship between gangliosides and epidermal growth factor receptor (EGFR) activation during osteoblastic differentiation of hMSCs was observed, and the gangliosides may play a major role in the regulation of the differentiation. The roles of gangliosides in osteoblast differentiation are dependent on the origin of hMSCs. The reduction of ganglioside biosynthesis inhibited the neuronal differentiation of hMSCs during an early stage of the differentiation process, and the ganglioside expression can be used as a marker for the identification of neuronal differentiation from hMSCs.

Inhibition of GM3 Synthase Attenuates Neuropathology of Niemann-Pick Disease Type C by Affecting Sphingolipid Metabolism

  • Lee, Hyun;Lee, Jong Kil;Bae, Yong Chul;Yang, Song Hyun;Okino, Nozomu;Schuchman, Edward H.;Yamashita, Tadashi;Bae, Jae-Sung;Jin, Hee Kyung
    • Molecules and Cells
    • /
    • 제37권2호
    • /
    • pp.161-171
    • /
    • 2014
  • In several lysosomal storage disorders, including Niemann-Pick disease Type C (NP-C), sphingolipids, including glycosphingolipids, particularly gangliosides, are the predominant storage materials in the brain, raising the possibility that accumulation of these lipids may be involved in the NP-C neurodegenerative process. However, correlation of these accumulations and NP-C neuropathology has not been fully characterized. Here we derived NP-C mice with complete and partial deletion of the Siat9 (encoding GM3 synthase) gene in order to investigate the role of ganglioside in NP-C pathogenesis. According to our results, NP-C mice with homozygotic deletion of GM3 synthase exhibited an enhanced neuropathological phenotype and died significantly earlier than NP-C mice. Notably, in contrast to complete depletion, NP-C mice with partial deletion of the GM3 synthase gene showed ameliorated NP-C neuropathology, including motor disability, demyelination, and abnormal accumulation of cholesterol and sphingolipids. These findings indicate the crucial role of GM3 synthesis in the NP-C phenotype and progression of CNS pathologic abnormality, suggesting that well-controlled inhibition of GM3 synthesis could be used as a therapeutic strategy.

Pathophysiological Implication of Ganglioside GM3 in Early Mouse Embryonic Development through Apoptosis

  • Ju Eun-Jin;Kwak Dong-Hoon;Lee Dae-Hoon;Kim Sung-Min;Kim Ji-Su;Kim Sun-Mi;Choi Han-Gil;Jung Kyu-Yong;Lee Seo-ul;Do Su-Il;Park Young-Il;Choo Young-Kug
    • Archives of Pharmacal Research
    • /
    • 제28권9호
    • /
    • pp.1057-1064
    • /
    • 2005
  • Apoptosis may occur in early embryos where the execution of essential developmental events has failed, and gangliosides, sialic acid-conjugated glycosphingolipids, are proposed to regulate cell differentiation and growth. To evaluate the regulatory roles of ganglioside GM3 in early embryonic development, this study examined its expressional patterns in apoptotic cells during early embryonic development in mice. Pre-implanted embryos were obtained by in vitro fertilization, which were treated at the 4-cell stage with three the apoptosis inducers, actinomycin D, camptothecin and cycloheximide, for 15 h. All three inducers significantly increased the percentage of apoptotic cells, as measured using a TUNEL method, but remarkably reduced the total cell numbers. The numbers of morula and blastocyst stages were significantly decreased by treatment of the embryos with the three apoptosis inducers compared with the control, with a similar result also observed in the number of blastomeres. Staining of early embryos with Hoechst 33342 revealed a significant percentage of apoptotic nuclei. Prominent immunofluo­rescence microscopy revealed a significant difference in the ganglioside GM3 expression in apoptotic embryos compared with the control, and RT-PCR also demonstrated a dramatic increase in ganglioside GM3 synthase mRNA in the apoptotic embryos. These results suggest that ganglioside GM3 may be pathophysiologically implicated in the regulation of early embryonic development through an apoptotic mechanism.

Effect of ganglioside GD3 synthase gene expression on VSMC proliferation via ERK1/2 pathway, cell cycle progression and MMP-9 expression

  • Lee, Young-Choon;Kim, Cheorl-Ho
    • 한국식물생명공학회:학술대회논문집
    • /
    • 한국식물생명공학회 2004년도 생명공학 실용화를 위한 비젼
    • /
    • pp.81-90
    • /
    • 2004
  • Sialic acid containing glycosphingolipids (gangliosides) have been implicated in the regulation of various biological phenomena such as atherosclerosis. Recent report suggeststhat exogenously supplied disialoganglioside (GD3) serves a dual role in vascular smooth muscle cells (VSMC) proliferation and apoptosis. However, the role of the GD3 synthase gene in VSMC responses has not yet been elucidated. To determine whether a ganglioside is able to modulate VSMC growth. the effect of overexpression of the GD3 synthase gene on DNA synthesis was examined. The results show that the overexpression of this gene has a potent inhibitory effect on DNA synthesis and ERK phosphorylation in cultured VSMC in the presence of PDGF. The suppression of the GD3 synthase gene was correlated with the down-regulation of cyclinE/CDK2. the up-regulation of the CDK inhibitor p21 and blocking of the p27 inhibition,whereas up-regulation of p53 as the result of GD3 synthase gene expression was not observed. Consistently, blockade of GD3 function with anti-GD3 antibody reversed VSMC proliferation and cell cycle proteins. The expression of the CD3 synthase gene also led to the inhibition of TNF--induced matrix metalloproteinase-9 (MMP-9) expression in VSMC as determined by zymography and immunoblot. Furthermore, GD3 synthase gene expression strongly decreased MMP-9 promoteractivlty in response to TNF-. This inhibition was characterized by the down-regulation of MMP-9,which was Iranscriptionally regulated at NF-B and activation protein-1 (AP-1) sites in the MMP-9promoter Finally, the overexpression of MMP-9 in GD3 synthase transfectant cells rescued VSMC proliferation. However MMP-2 overexpression was not affected the cell proliferation. These findings suggest that the fl13 synthase gene represents a physiological modulator of VSMC responses that may contribute to plaque instability in atherosclerosis.

  • PDF

Developmental Patterns of mST3GaIV mRNA Expression in the Mouse: In Situ Hybridization using DIG-labeled RNA Probes

  • Ji, Min-Young;Lee, Young-Choon;Do, Su-Il;Nam, Sang-Yun;Jung, Kyu-Yong;Kim, Hyoung-Min;Park, Jong-Kun;Choo, Young-Kug
    • Archives of Pharmacal Research
    • /
    • 제23권5호
    • /
    • pp.525-530
    • /
    • 2000
  • mST3GaIV synthesizes ganglioside GM3, the precursor for simple and complex a- and b- series gangliosides, and the expression and regulation of mST3GaIV (CMP-NeuAc: lactosylceramide $\alpha$2,3-sialyltransferase) activity is central to the production of almost all gangliosides, a class of glycosphingolipids implicated in variety of cellular processes such as transmembrane signaling, synaptic transmission, specialized membrane domain formation and cell-cell interactions. To understand the developmental expression of mST3GaIV in mice, we investigated the spatial and temporal expression of mST3GaIV mRNA during the mouse embryogenesis [embryonic (E) days; 19, E11, E13, E15] by in situ hybridization with digoxigenin-labeled RNA probes. All tissues from 19 and E11 were positive for mST3GaIV mRNA. On E13, mST3GaIV mRNA was expressed in various neural and non-neural tissues. In contrast to these, on E15, the telencephalon and liver produced a strong expression of mST3GaIV which was a quite similar to that of E13. In this stage, mST3GaIV mRNA was also expressed in some non-neural tissues. These data indicate that mST3GaIV is differently expressed at developmental stages of embryo, and this may be importantly related with regulation of organogenesis in mice.

  • PDF

역상HPLC컬럼을 이용한 생체 내 단당세라마이드 분석 (Determination of Monoglycoceramides in Biological Samples using Enzymatic Deacylation and Reverse-phase HPLC)

  • 최미화;최경미;지소영;이윤선;조주현;이용문;윤여표;유환수
    • 약학회지
    • /
    • 제54권5호
    • /
    • pp.354-361
    • /
    • 2010
  • Glycosphingolipids are structural components of mammalian cell membranes and are involved in essential cellular physiology such as cell-cell interaction, recognition, transmembrane signaling, proliferation and cell death. In this study, the simple quantitative method of monoglycoceramides-containing glucosylceramide and galactosylceramide was developed. The glycosylceramides extracted from culture cells and rat plasma were resolved by TLC, deacylated by SCDase and analyzed by HPLC-fluorescence detector at an excitation wavelength of 340 nm and an emission wavelength of 455 nm. Limit of detection was approximately 0.1 pmol and limit of quantification was about 1 pmol for both monoglycoceramide standards. The recoveries of standard glucosylceramides from intra- and inter-day assays were 113.8 and 88.8% and those of galactosylceramides were 110.7 and 123.9%, respectively. The monoglycoceramide contents of SW-620 cells and rat plasma were $141.5{\pm}5$ pmol/$1{\times}10^6$ cells and $3.9{\pm}0.3{\mu}M$, respectively. The present analytical method provides a reproducible quantification and total content of monoglycoceramide which may be as a potential biomarker for lipid imbalance-related human diseases.

Fabry disease: current treatment and future perspective

  • Han-Wook Yoo
    • Journal of Genetic Medicine
    • /
    • 제20권1호
    • /
    • pp.6-14
    • /
    • 2023
  • Fabry disease (FD), a rare X-linked lysosomal storage disorder, is caused by mutations in the α-galactosidase A gene gene encoding α-galactosidase A (α-Gal A). The functional deficiency of α-Gal A results in progressive accumulation of neutral glycosphingolipids, causing multi-organ damages including cardiac, renal, cerebrovascular systems. The current treatment is comprised of enzyme replacement therapy (ERT), oral pharmacological chaperone therapy and adjunctive supportive therapy. ERT has been introduced 20 years ago, changing the outcome of FD patients with proven effectiveness. However, FD patients have many unmet needs. ERT needs a life-long intravenous therapy, inefficient bio-distribution, and generation of anti-drug antibodies. Migalastat, a pharmacological chaperone, augmenting α-Gal A enzyme activity only in patients with mutations amenable to the therapy, is now available for clinical practice. Furthermore, these therapies should be initiated before the organ damage becomes irreversible. Development of novel drugs aim at improving the clinical effectiveness and convenience of therapy. Clinical trial of next generation ERT is underway. Polyethylene glycolylated enzyme has a longer half-life and potentially reduced antigenicity, compared with standard preparations with longer dosing interval. Moss-derived enzyme has a higher affinity for mannose receptors, and seems to have more efficient access to podocytes of kidney which is relatively resistant to reach by conventional ERT. Substrate reduction therapy is currently under clinical trial. Gene therapy has now been started in several clinical trials using in vivo and ex vivo technologies. Early results are emerging. Other strategic approaches at preclinical research level are stem cell-based therapy with genome editing and systemic mRNA therapy.

파브리병에서의 심장 자기공명영상의 역할 (The Role of Cardiac MRI in the Diagnosis of Fabry Disease)

  • 홍유진;김영진
    • 대한영상의학회지
    • /
    • 제81권2호
    • /
    • pp.302-309
    • /
    • 2020
  • 파브리병(Fabry disease)은 매우 드문 X-연관 유전 대사 질환으로 알파 갈락토시다아제(alpha galactosidase A)의 결핍으로 인하여 다양한 세포 및 기관에 글리코스핑고지질(glycosphingolipid)의 축적을 초래하는 질환이다. 심장 침범이 비교적 흔하며 비정상적인 지질침착으로 인한 심근 염증, 좌심실 비대 및 심근 섬유증을 일으킨다. 심장 침범은 환자 예후를 결정하는 중요한 요인이므로 이를 진단하는 것은 매우 중요하다. 심장 자기공명영상은 심실의 기능, 부피 측정을 위한 표준기법으로 알려져 있으며 심근의 조직 변화를 볼 수 있는 유용한 기법이다. 특히 최근 많이 쓰이는 T1 지도화 기법을 통한 심근 조영 전 T1 수치를 이용하여 파브리병의 심장 침범을 조기 진단할 수 있으며 자기공명영상을 이용한 심근 질량 측정으로 치료 모니터링을 할 수 있다. 심장 자기공명영상은 파브리병 환자에서 다양한 역할을 할 수 있을 것으로 생각되며 이에 대해 정리해보고자 한다.

NIH-미니돼지의 간과 심장에서 갱글리오시드의 서로 다른 발현 패턴 (Differential Expression Patterns of Gangliosides in the Liver and Heart of NIH-miniature Pigs)

  • 유재성;장규태;김지수;곽동훈;이영춘;오건봉;추영국
    • 생명과학회지
    • /
    • 제20권4호
    • /
    • pp.467-473
    • /
    • 2010
  • 갱글리오시드는 포유동물 세포막의 중요한 구성요소로서 세포와 세포 혹은 세포와 단백질간의 상호작용을 포함한 다양한 면역학적 역할을 수행하고 있다. 이 연구는 NIH-미니돼지의 간과 심장을 인간에게 이식할려고 할 때 예측되어지는 거부 반응과 관련된 구성성분들 중 시알산을 함유하고 있는 스핑고당지질인 갱글리오시드에 대해 조사하였다. 얇은막크로마토그래피와 면역조직화학적분석을 실시한 결과 NIH-미니돼지의 간은 갱글리오시드의 발현이 심장보다 높게 나타났다. 갱글리오시드 GD3, GD1a, GD1b, GT1b는 간과 심장의 두 기관에서 발견되었다. 그러나 GQ1b는 간에서만 발견되었고 심장에서는 검출되지 않았다. 이러한 결과는 갱글리오시드의 발현양상은 간과 심장에서 조직특이적이라는 것을 의미한다. 한편, GM3를 포함한 다른 갱글리오 시리즈인 갱글리오시드들은 NIH-미니돼지의 간과 심장에서 검출되어지지 않았다. 이와 같은 연구결과로부터 갱글리오시드는 미니돼지의 장기중 특히, 간과 심장의 이종장기이식과 관련된 면역거부반응에서 어떤 역할을 수행하고 있다고 여겨진다.