Differential Expression Patterns of Gangliosides in the Ischemic Cerebral Cortex Produced by Middle Cerebral Artery Occlusion

  • Kwak, Dong Hoon (Department of Biological Science, College of Natural Sciences, Wonkwang University) ;
  • Kim, Sung Min (Department of Biological Science, College of Natural Sciences, Wonkwang University) ;
  • Lee, Dea Hoon (Department of Biological Science, College of Natural Sciences, Wonkwang University) ;
  • Kim, Ji Su (Department of Biological Science, College of Natural Sciences, Wonkwang University) ;
  • Kim, Sun Mi (Department of Biological Science, College of Natural Sciences, Wonkwang University) ;
  • Lee, Seo Ul (Department of Pharmacology, Wonkwang University School of Medicine) ;
  • Jung, Kyu Yong (Department of Pharmacology, Wonkwang University School of Medicine) ;
  • Seo, Byoung Boo (Department of Molecular and Experimental Medicine, The Scripps Research Institute) ;
  • Choo, Young Kug (Department of Biological Science, College of Natural Sciences, Wonkwang University)
  • 투고 : 2005.06.14
  • 심사 : 2005.08.18
  • 발행 : 2005.12.31

초록

Neuronal damage subsequent to transient cerebral ischemia is a multifactorial process involving several overlapping mechanisms. Gangliosides, sialic acid-conjugated glycosphingolipids, reduce the severity of acute brain damage in vitro. However their in vivo effects on the cerebral cortex damaged by ischemic infarct are unknown. To assess the possible protective role of gangliosides we examined their expression in the cerebral cortex damaged by ischemic infarct in the rat. Ischemia was induced by middle cerebral artery (MCA) occlusion, and the resulting damage was observed by staining with 2, 3, 5-triphenylterazolium chloride (TTC). High-performance thin-layer chromatography (HPTLC) showed that gangliosides GM3 and GM1 increased in the damaged cerebral cortex, and immunofluorescence microscopy also revealed a significant change in expression of GM1. In addition, in situ hybridization demonstrated an increase in the mRNA for ganglioside GM3 synthase. These results suggest that gangliosides GM1 and GM3 may be synthesized in vivo to protect the cerebral cortex from ischemic damage.

키워드

과제정보

연구 과제 주관 기관 : Korea Science and Engineering Foundation

참고문헌

  1. Apostolski, S. and Latov, N. (1993) Clinical syndromes associated with anti-GM1 antibodies. Semin. Neurol. 13, 264-268 https://doi.org/10.1055/s-2008-1041133
  2. Bharucha, V. A., Wakade, C. G., Mahadik, S. P., and Karpiak, S. E. (1991) GM1 ganglioside treatement reduces functional deficits associated with cortical focal ischemia. Exp. Neurol. 114, 136-139 https://doi.org/10.1016/0014-4886(91)90091-P
  3. Choi, D. W. (1988) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1, 623-634 https://doi.org/10.1016/0896-6273(88)90162-6
  4. Choi, D. W. (1990) Methods for antagonizing glutamate neurotoxicity. Cerebrovasc. Brain Metab. Rev. 2, 105-147
  5. Choo, Y. K., Ichikawa, S., and Hirabayashi, Y. (2001) Developmental patterns of ceramide glucosyltransferase (GlcT-1) expression in the mouse: in situ hybridization using DIGlabeled RNA probes. Mol. Cells 11, 346-351
  6. Djuricic, B. M., Pashen, W., Bosma, H. J., and Hossman, K. A. (1983) Biochemical changes during graded brain ischemia in gerbils. Part I. Global biochemical alterations. J. Neurol. Sci. 58, 25-36
  7. Facci, L., Leon, A., Toffano, G., Sonnino, S., Ghidoni, R., et al. (1984) Promotion of neuritogenesis in mouse neuroblastoma cells by exogenous gangliosides. Relationship between the effect and cell association of ganglioside GM1. J. Neurochem. 42, 821?828
  8. Facci, L., Skaper, S. D., Favaron, M., and Leon, A. (1988) A role for gangliosides in astroglial cell differentiation in vitro. J. Cell Biol. 106, 821-828 https://doi.org/10.1083/jcb.106.3.821
  9. Ferrari, G., Fabris, M., and Gorio, A. (1983) Gangliosides enhance neurite outgrowth in PC12 cells. Brain Res. 8, 215-221 https://doi.org/10.1016/0165-3806(83)90006-8
  10. Fishman, P. H. and Brady, R. O. (1976) Biosynthesis and function of gangliosides. Science 194, 906-915 https://doi.org/10.1126/science.185697
  11. Graus, F., Cordon-Cardo, C., Houghton, A. N., Melamed, M. R., and Old, I. J. (1984) Distribution of the ganglioside GD3 in human nervous system detected by R24 mouse monoclonal antibody. Brain Res. 324, 190-194 https://doi.org/10.1016/0006-8993(84)90642-5
  12. Hakomori, S. (1990) Bifunctional role of glycosphingolipids. Modulators for trans membrane signaling and mediators for cellular interaction. J. Biol. Chem. 265, 18713-18716
  13. Hakomori, S., Yamamura, S., and Handa, A. K. (1998) Signal transduction through glyco (sphingo) lipid introduction and resent studies on glyco (sphingo) lipid-enriched microdomanins. Ann. N. Y. Acad. Sci. 845, 1-10 https://doi.org/10.1111/j.1749-6632.1998.tb09657.x
  14. Hara, H., Huang, P. L., Panahian, N., Fishman, M. C., and Moskowitz, M. A. (1996) Reduced brain edema and infarction volume in mice lacking the neuronal isoform of nitric oxide synthase after transient MCA occlusion. J. Cereb. Blood Flow. Metab. 16, 605-611
  15. Hwang, I. K., Yoo, K. Y., Kim, D. S., Jung, J. Y., Kim, K. S., et al. (2004) Changes in parvalbumin immunoreactivity in the parietofrontal cortex after transient forebrain ischemia in the Mongolian gerbil. Mol. Cells 17, 304-308
  16. Iber, H., Zacharias, C., and Sandhoff, K. (1992) The c-series gangliosides GT3, GT2 and GP1c are formed in rat liver Golg. By the same set of glycosyltransferases that catalyse the biosynthesis of asialo-, a- and b-series gangliosides. Glycobiology 2, 137-142 https://doi.org/10.1093/glycob/2.2.137
  17. Ji, M. Y., Lee, Y. C., Do, S. L., Nam, S. Y., Kim, H. M., et al. (2000) Developmental patterns of mST3GalV mRNA expression in the mouse: in situ hybridization using DIG-labeled RNA probes. Arch. Pharm. Res. 23, 525-530 https://doi.org/10.1007/BF02976584
  18. Karpiak, S. E. (1984) Exogenous gangliosides enhance recovery from CNS injury. Adv. Exp. Med. Bil. 174, 489-497
  19. Kitamura, Y., Yanagisawa, D., Inden, M., Takata, K., Tsuchiya, D., et al. (2005) Recovery of focal brain ischemia-induced behavioral dysfunction by intracerebroventricular injection of microglia. J. Pharmacol. Sci. 97, 289-293 https://doi.org/10.1254/jphs.SC0040129
  20. Komastsumoto, S., Greenberg, J. H., Hickey, W. F., and Reivich, M. (1988) Effect of ganglioside GM1 on neurologic function, electroencephalogram amplitude, and histology in chronic middle cerebral artery occlusion cats. Stroke 19, 1027-1035 https://doi.org/10.1161/01.STR.19.8.1027
  21. Kono, M., Takashima, S., Liu, H., Inoue, M., Kojima, N., et al. (1998) Molecular cloning and functional expression of a fifth-type alpha 2,3-sialytransferase (mST3Gal V: GM3 synthase). Biochem. Biophys. Res. Commun. 9, 170-175
  22. Kotani, M., Kawashima, I., Ozawa, H., Terashima, T., and Tai, T. (1993) Differential distribution of major gangliosides in rat central nervous system detected by specific monoclonal antibodies. Glycobiology 3, 137-146 https://doi.org/10.1093/glycob/3.2.137
  23. Kurosawa, N., Yoshida, Y., Kojima, N., and Tsuji, S. (1997) Polysialic acid synthase (ST8Sia II/STX) mRNA expression in the developing mouse central nervous system. J. Neurochem. 69, 494-503 https://doi.org/10.1046/j.1471-4159.1997.69020494.x
  24. Ledden, R. W. (1984) Biology of gangliosides: neuritogenic and neuronotrophic properties. J. Neurosci. Res. 12, 147-159 https://doi.org/10.1002/jnr.490120204
  25. Ledeen, R. W. and Yu, R. K. (1982) Gangliosides: structure, isolation, and analysis. Methods Enzymol. 83, 139-191 https://doi.org/10.1016/0076-6879(82)83012-7
  26. Lipartiti, M., Lazzaro, A., Zanoni, R., Mazzari, S., Toffano, G., et al. (1991) Monosialoganglioside GM1 reduces NMDA neurotoxicity in neonatal rat brain. Exp. Neurol. 113, 301-305 https://doi.org/10.1016/0014-4886(91)90019-9
  27. Liu, X. H., Kato, H., Araki, T., Itoyama, Y., Kato, K., et al. (1994) An immunohistochemical study of copper/zinc superoxide dismutase and manganese superoxide dismutase following focal cerebral ischemia in the rat. Brain Res. 644, 257-266 https://doi.org/10.1016/0006-8993(94)91688-8
  28. Mahadik, S. P. and Karpiak, S. E. (1988) Gnagliosides in treatment of neural injury and disease. Drug Dev. Res. 15, 337-360 https://doi.org/10.1002/ddr.430150402
  29. Mahadik, S. P., Bharucha, V. A., Stadlin, A., Ortiz, A., and Karpiak, S. E. (1992) Loss and recovery of activities of and isozymes of $(Na^_+K^+$ -ATPase in cortical focal ischemia: GM1 ganglioside protects plasma membrane structure and function. J. Neurosci. Res. 32, 209-220 https://doi.org/10.1002/jnr.490320210
  30. Martinez, G., Carnazza, M. L., Campisi, A., Sorrenti, V., Di Giacomo, C., et al. (1998) Effect of glutathione depletors on post-ischemic reperfusion in rat brain. Neurochem. Res. 23, 961-968 https://doi.org/10.1023/A:1021080321320
  31. Nojiri, H., Takaku, F., Terui, Y., Miura, Y., and Saito, M. (1986) Ganglioside GM3; an acidic membrane component that increase during macrophage-like cell differentiation can induce monocytic differentiation of human myeloid and monocytoid leulcemic cell lines H2-60 and U937. Proc. Natl. Acad. Sci. USA 83, 782-786
  32. Ogawa-Goto, K., Funamoto, N., Ohta, Y., Abe, T., and Nagashima, K. (1992) Myelin ganglioside of human peripheral nervous system: an enrichment of GM1 in the motor nerve myelin isolated from cauda equnia. J. Neurochem. 59, 1844-1849 https://doi.org/10.1111/j.1471-4159.1992.tb11018.x
  33. Ortiz, A., MacDonall, J. S., Wakade, C. G., and Karpiak, S. E. (1990) GM1 ganglioside reduces cognitive dysfunction after focal cortical ischemia. Pharmacol. Biochem. Behav. 37, 679-684 https://doi.org/10.1016/0091-3057(90)90546-T
  34. Ozawa, H., Kotani, M., Kawashima, I., and Tai, T. (1992) Generation of one set of monoclonal antibodies specific for bpathway ganglio-series gangliosides. Biochem. Biophys. Acta 1123, 184-190 https://doi.org/10.1016/0005-2760(92)90110-H
  35. Phillis, J. W. and O'Regan, M. H. (1995) GM1 ganglioside inhibits ischemia release of amino acid neurotransmitters from rat cortex. NeuroReport 6, 2010-2012 https://doi.org/10.1097/00001756-199510010-00014
  36. Sabel, B. A., Gottlieb, J., and Schneider, G. E. (1988) Exogenous GM1 gangliosides protect against retrograde degeneration following posterior neocortex lesions in developing hamsters. Brain Res. 459, 373-380 https://doi.org/10.1016/0006-8993(88)90655-5
  37. Seren, M. S., Rubini, R., Lazzaro, A., Zanoni, R., Fiori, M. G., et al. (1990) Protective effects of a monosialoganglioside derivative following transitory forebrain ischemia in rats. Stroke 21, 1607-1612 https://doi.org/10.1161/01.STR.21.11.1607
  38. Siesjo, B. K. (1988) Calcium, ischemia and death of brain cells. Ann. N.Y. Acad. Sci. 522, 638-661 https://doi.org/10.1111/j.1749-6632.1988.tb33410.x
  39. Stojiljkovic, M., Blagojevic, T., Vukosavic, S., Zvezdina, N. D., Pekovic, S., et al. (1996) Ganglioside GM1 and GM3 in early human brain development: an immunocytochemical study. Int. J. Dev. Neurosci. 14, 35-44 https://doi.org/10.1016/0736-5748(95)00078-X
  40. Stull, N. D., Schneider, J. S., and Iacovitti, L. (1994) GM1 ganglioside partially rescues cultures dopaminergic neurons from MPP+-induced damage: dependence on initial damage and time of treatment. Brain Res. 640, 308-315 https://doi.org/10.1016/0006-8993(94)91886-4
  41. Svennerholm, L. (1980) Gangliosides and synaptic transmission. In advances in experimental biology and medicine: structure and function of gangliosides. Adv. Exp. Med. Biol. 125, 533-544
  42. Takamiya, K., Yamamoto, A., Furukawa, K., Yamashiro, S., Shin, M., et al. (1996) Mice with disrupted GM2/GD2 synthase gene lack complex gangliosides but exhibit only subtle defects in their nervous system. Proc. Natl. Acad. Sci. USA 93, 10662-10667
  43. Tananka, K., Dora, E., Ubranies, R., Greenberg, J. H., Toffano, G., et al. (1986) Effect of ganglioside GM1 on cerebral metabolism, microcirculation, recovery kinetics of ECoG and histology, during the recovery period following focal ischemia in cats. Stroke 17, 1170-1178 https://doi.org/10.1161/01.STR.17.6.1170
  44. Vaccarino, F., Guidotti, A., and Costa, E. (1987) Ganglioside inhibition of glutamate-mediated protein kinase C translocation in primary cultures of cerebellar neurons. Proc. Natl. Acad. Sci. USA 84, 8707-8711
  45. Willison, H. J. and Yuki, N. (2002) Peripheral neuropathies and anti-glycolipid antibodies. Brain 125, 2591-2625 https://doi.org/10.1093/brain/awf272