• Title/Summary/Keyword: Glycosaminoglycan expression

Search Result 27, Processing Time 0.029 seconds

STUDY ON EXPRESSION OF GLYCOSAMINOGLYCAN IN ADENOID CYSTIC CARCINOMA (선양낭성암종(Adenoid Cystic Carcinoma)에서의 Glycosaminoglycan의 발현에 관한 연구)

  • Son, Chang-Won;Kim, Kyung-Wook;Kim, Chul-Hwan
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.30 no.4
    • /
    • pp.271-281
    • /
    • 2004
  • Adenoid cystic carcinoma is malignant tumor in salivary gland, and its behavior is very invasive. Of all malignant tumor adenoid cystic carcinoma is occured in frequency of 4.4% in major salivary gland, and 1.29% in minor salivary gland. Histopathologically, adenoid cystic carcinoma is characterized by a cribriform appearance, and tubular form and solid nest type tumor can be seen. The tumor cell structure composed of modified myoepithelial cell, and basaloid cell. Extracellular matrix of this tumor cell contains variable ground substance with basement membrane component. Basement membrane matrix composed of collagen fibers, glycoproteins, proteoglycans, and its function is well known that it participate in differentiation, proliferation, and growth of tumor cell. Basement membrane molecule is essential for invasion of peripheral nerve, blood vessel, skeletal muscle in tumor cell of adenoid cystic carcinoma. In many studies, the tumor cell of adenoid cystic carcinoma containing modified myoepithelial cell participate in synthesis of proteoglycan. In this study, tissue sample of adenoid cystic carcinoma of human salivary gland were obtained from 15 surgical specimen, and all specimen were routinely fixed in 10% formalin and embedded. Serial $4-{\mu}m$ thick sections were cut from paraffin blocks. the histopathologic evaluation was done with light microscopy. And, the immunohistochemical staining, characteristics of glycosaminoglycan were observed. For biochemical analysis of glycosaminoglycan, isolation of crude glycosaminoglycan from tumor tissue and Western bolt analysis were carried out. With transmission electomicroscopy, tumor cell were observed. Biologic behavior of adenoid cystic carcinoma was observed with distribution and expression of basement membrane of glycosaminoglycan in tumor cells, The results obtained were as follows: 1. In immunohistochemical study, chondroitin sulfate is postively stained in tumor cell and interstitial space, dermatan sulfate is weakly stained in ductal cell. But keratan sulfate is negatively stained. 2. In immunohistochemical study, heparan sulfate is strong positive stained in tumor cell and basement membrane, especially in invasion area to peripheral nerve tissue. 3. In transmission electromicroscpic view, the tumor cells are composed modifed myoepithelial cells, and contains many microvilli and rough endoplasmic reticulum. 4. In Western blot analysis, the expression of glycosaminoglycan is expressed mostly in heparan sulfate. From the results obtained in this study, tumor cell of adenoid cystic carcinoma is composed modified myoepithelial cell, and glycosaminoglycan of basement membrane molecule of heparan sulfate and chondroitin sulfate mostly participate in the development and invasiveness of adenoid cystic carcinoma by immunohistochemical study and western blot analysis.

GLYCOSAMINOGLYCAN EXPRESSION IN PLEOMORPHIC ADENOMAS OF THE SALIVARY GLAND (타액선 다형성 선종에서 Glycosaminoglycan의 발현)

  • Kim, Seong-Joo;Kim, Chul-Hwan;Kim, Kyung-Wook
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.28 no.1
    • /
    • pp.1-12
    • /
    • 2006
  • Pleomorphic adenoma is the most common benign tumor in salivary glands, and occurred in frequency of 60% in parotid gland tumors, and 50% in submandibular gland tumors, and 25% in sublingual gland tumors. Histopathologically, pleomorphic adenoma is composed of epithelial cells and mesenchymal tissues, and called 'mixed tumor' because of morphological divergency. The cell structures of luminal area are composed of polyhedral and cuboidal secretory epithelial cells and modified myoepithelial cells around it, and mesenchymal tissue is composed of some myoepithelial cells and stromal tissue. In stromal tissue, myxoid change, chondroid change, or hyalinization can be seen even if bone tissue. In many studies, tumor cells of pleomorphic adenoma containing modified myoepithelial cell participate in synthesis of glycosaminoglycans. In this study, tissue sample of pleomorphic adenoma of human salivary gland were obtained from 20 surgical specimens, and all specimens were routinely fixed in 10% formalin and embedded. Serial 4-8${\mu}m$ thick sections were cut from paraffin blocks. The histopathologic evaluation was done with light microscopy. And, with immunohistochemical staining, characteristics of glycosaminoglycan were observed. And, for biochemical analysis of glycosaminoglycan, isolation of crude glycosaminoglycan from tumor tissue and immuno-blot analysis were carried out. With transmission electromicroscopy, tumor cells and biologic behavior of pleomorphic adenoma were observed with distribution and expression of glycosaminoglycan in tumor cells, The results were obtained as follows: 1. In immunohistochemical study, chondroitin 4-sulfate is highly postively stained in myxoid stromal tissue, and chondroitin 6-sulfate is highly positively stained in chondroid mesenchymal tissue, both glycosaminoglycans are positively stained in non-luminal cell of ductal area. 2. Dermatan sulfate and keratan sulfate is positively stained in periductal non-luminal tumor cells. 3. In immunohistochemical study, heparan sulfate is weakly stained in luminal cells and non-luminal cells around duct, and chondroid mesenchymal tissue. 4. In transmission electromicroscopic view, the tumor cells are composed of modified myoepithelial cells, and contain many microfilaments and well developed rough endoplasmic reticulum. 5. In Immuno-Blot analysis, the expression of glycosaminoglycans is expressed mostly in chondroitin 6-sulfate and chondroitin 4-sulfate. From the results obtained in this study, tumor cells of pleomorphic adenoma are composed of modified myoepithelial cells, and glycosaminoglycans of chondroitin 4-sulfate and chondroitin 6-sulfate mostly participate in the development of pleomorphic adenoma, but dermatan sulfate, keratan sulfate and heparan sulfate glycosaminoglycans were expressed variably.

A Study on the Expression of Glycosaminoglycans in the Experimental Tooth Movement of Rat and in Cultured Periodontal Ligament Cells (실험적 치아이동시 glycosaminoglycan의 발현에 관한 연구)

  • Lee, Kyung-Hwan;Lee, Jong-Jin;Kang, Kyung-hwa;Kim, Eun-Cheol;Kim, Sang-Cheol
    • The korean journal of orthodontics
    • /
    • v.31 no.4 s.87
    • /
    • pp.447-458
    • /
    • 2001
  • The purpose of this study was to evaluate 1) in vivo, the expression of chondroitin 4-sulfate (CH-4S), a structural element of glycosaminoglycans(GAGs), in periodontal tissue during the experimental movement of rat incisors, by labelled streptavidine biotin immunohistochemical staining for CH-4S, 2) In vitro, the expression of CH-4S in cultured human periodontal ligament(PDL) cells supplemented with 10ng/ml of $TGF-{\beta}_1$, 20ng/ml of PDGF-BB, 1ng/ml $TNF-\alpha$, or $1{\mu}g/ml$ LPS by western blot analysis. The results of this study were as follows ; 1. The expression of CH-4S was stronger in pulp, PDL, osteoblasts, osteoclasts and osteocytes in experimental group than in control group, but was rare in dentin, and cementum of experimental groups, regardless of the duration of force application, which was not different from that of control group. 2. In experimental group, the expression of CH-4S in pulp began to increase at 1 day after force application and got to the highest degree at 7 days. After 14 days, the expression in CH-4S immunoreactivity was decreased, and became similar to that of control group at 28 days. 3. The expression of CH-4S in PDL was noted in adjacent to alveolar bone. PDL showed higher intensity of immunolabelling after 1 day of orthodontic tooth movement. And the expression was more stronger in the tension side than that of pressure side of PDL at 1 day, but more stronger in the pressure side than that of tension side of PDL at 4 days. After 7 days, a decrease in CH-4S expression was observed. 4. The expression of CH-4S in alveolar bone got to the highest degree at 4 days, and At 7 days, a decrease in CH-4S expression was observed. 5. PDGF-BB notably raised the expression of CH-4S in the PDL cells at 3 days of cultivation 6. The expression of CH-4S of PDL cells was decreased with the application of $TNF-\alpha$ at 1 day. 7. Admixture of $TGF-{\beta}_1$ and PDGF-BB got more expression of CH-4S in PDL as compared to only $TGF-{\beta}1$ or PDGF-BB. A similar decrease of the expression of CH-4S was observed in the case of application of LPS or $TNF-\alpha$.

  • PDF

Anti-Diabetic Effects of Dung Beetle Glycosaminoglycan on db Mice and Gene Expression Profiling

  • Ahn, Mi Young;Kim, Ban Ji;Yoon, Hyung Joo;Hwang, Jae Sam;Park, Kun-Koo
    • Toxicological Research
    • /
    • v.34 no.2
    • /
    • pp.151-162
    • /
    • 2018
  • Anti-diabetes activity of Catharsius molossus (Ca, a type of dung beetle) glycosaminoglycan (G) was evaluated to reduce glucose, creatinine kinase, triglyceride and free fatty acid levels in db mice. Diabetic mice in six groups were administrated intraperitoneally: Db heterozygous (Normal), Db homozygous (CON), Heuchys sanguinea glycosaminoglycan (HEG, 5 mg/kg), dung beetle glycosaminoglycan (CaG, 5 mg/kg), bumblebee (Bombus ignitus) queen glycosaminoglycan (IQG, 5 mg/kg) and metformin (10 mg/kg), for 1 month. Biochemical analyses in the serum were evaluated to determine their anti-diabetic and anti-inflammatory actions in db mice after 1 month treatment with HEG, CaG or IQG treatments. Blood glucose level was decreased by treatment with CaG. CaG produced significant anti-diabetic actions by inhiting creatinine kinase and alkaline phosphatase levels. As diabetic parameters, serum glucose level, total cholesterol and triglyceride were significantly decreased in CaG5-treated group compared to the controls. Dung beetle glycosaminoglycan, compared to the control, could be a potential therapeutic agent with anti-diabetic activity in diabetic mice. CaG5-treated group, compared to the control, showed the up-regulation of 48 genes including mitochondrial yen coded tRNA lysine (mt-TK), cytochrome P450, family 8/2, subfamily b, polypeptide 1 (Cyp8b1), and down-regulation of 79 genes including S100 calcium binding protein A9 (S100a9) and immunoglobulin kappa chain complex (Igk), and 3-hydroxy-3-methylglutaryl-CoenzymeAsynthase1 (Hmgcs1). Moreover, mitochondrial thymidine kinase (mt-TK), was up-regulated, and calgranulin A (S100a9) were down-regulated by CaG5 treatment, indicating a potential therapeutic use for anti-diabetic agent.

Glycosaminoglycan Degradation-Inhibitory Lactic Acid Bacteria Ameliorate 2,4,6-Trinitrobenzenesulfonic Acid-Induced Colitis in Mice

  • Lee, Bo-Mi;Lee, Jung-Hee;Lee, Hye-Sung;Bae, Eun-Ah;Huh, Chul-Sung;Ahn, Young-Tae;Kim, Dong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.6
    • /
    • pp.616-621
    • /
    • 2009
  • To evaluate the effects of lactic acid bacteria (LAB) in inflammatory bowel diseases (IBD), we measured the inhibitory effect of several LAB isolated from intestinal microflora and commercial probiotics against the glycosaminoglycan (GAG) degradation by intestinal bacteria. Bifidobacterium longum HY8004 and Lactobacillus plantarum AK8-4 exhibited the most potent inhibition. These LAB inhibited colon shortening and myeloperoxidase production in 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced experimental colitic mice. These LAB also blocked the expression of the proinflammatory cytokines, IL-$1{\beta}$ and TNF-$\alpha$, as well as of COX-2, in the colon. LAB also blocked activation of the transcription factor, NF-${\kappa}B$, and expression of TLR-4 induced by TNBS. In addition, LAB reduced the TNBS-induced bacterial degradation activities of chondroitin sulfate and hyaluronic acid. These findings suggest that GAG degradation-inhibitory LAB may improve colitis by inhibiting inflammatory cytokine expression via TLR-4-linked NF-${\kappa}B$ activation and by inhibiting intestinal bacterial GAG degradation.

The Relation Between Sox9, TGF-${\beta}1$, and Proteoglycan in Human Intervertebral Disc Cells

  • Lee, Yong-Jik;Kong, Min-Ho;Song, Kwan-Young;Lee, Kye-Heui;Heo, Su-Hak
    • Journal of Korean Neurosurgical Society
    • /
    • v.43 no.3
    • /
    • pp.149-154
    • /
    • 2008
  • Objective: The aim of this study is to elucidate the effects of transforming growth factor-${\beta}$ (TGF-${\beta}$)1 and L-ascorbic acid on proteoglycan synthesis, and the relationship between Sox9, proteoglycan, and TGF-${\beta}1$ in intervertebral disc cells. Methods: Human intervertebral disc tissue was sequentially digested to 0.2% pronase and 0.025% collagenase in DMEM/F-12 media and extracted cells were cultured in $37^{\circ}C$, 5% $CO_2$ incubator. When intervertebral disc cells were cultured with TGF-${\beta}1$ or L-ascorbic acid, the production level of sulfated glycosaminoglycan (sGAG) was estimated by dimethyl methyleneblue (DMMB) assay. The changes of Sox9 mRNA and protein levels via TGF-${\beta}1$ were detected by RT-PCR and Western blot analysis in each. Results: The amount of sGAG was increased with the lapse of time during incubation, and sGAG content of pellet cultured cells was much larger than monolayer culture. When primary cultured intervertebral disc cells in monolayer and pellet cultures were treated by TGF-${\beta}1$ 20 ng, sGAG content of experimental group was increased significantly compared to control group in both cultures. L-Ascorbic acid of serial concentrations (50-300 ug/ml) increased sGAG content of mono layer cultured intervertebral disc cells significantly in statistics. The co-treatment of TGF-${\beta}1$ and L-ascorbic acid increased more sGAG production than respective treatment. After treating with TGF-${\beta}1$, Sox9 mRNA and protein expression rates were significantly increased in disc cells compared with the control group. Conclusion: This study suggests that TGF-${\beta}1$ would increase sulfated glycosaminoglycan (sGAG) and other proteoglycans such as versican by elevating Sox9 mRNA and protein expressions in order.

Effects of Aralia cordata Thunb. on Proteoglycan Release, Type II Collagen Degradation and Matrix Metalloproteinase Activity in Rabbit Articular Cartilage Explants

  • Baek, Yong-Hyeon;Seo, Byung-Kwan;Lee, Jae-Dong;Huh, Jeong-Eun;Yang, Ha-Ru;Cho, Eun-Mi;Choi, Do-Young;Kim, Deog-Yoon;Cho, Yoon-Je;Kim, Kang-Il;Park, Dong-Suk
    • Journal of Acupuncture Research
    • /
    • v.22 no.2
    • /
    • pp.191-201
    • /
    • 2005
  • Background & Objective: Articular cartilage is a potential target for drugs designed to inhibit the activity of matrix metalloproteinases (MMPs) to stop or slow the destruction of the proteoglycan and collagen in the cartilage extracellular matrix. The purpose of this study was to investigate the effects of Aralia cordata Thunb. in inhibiting the release of glycosaminoglycan (GAG), the degradation of collagen, and MMP activity in rabbit articular cartilage explants. Methods : The cartilage-protective effects of Aralia cordata Thunb. were evaluated by using glycosaminoglycan degradation assay, collagen degradation assay, colorimetric analysis of MMP activity, measurement of lactate dehydrogenase activity and histological analysis in rabbit cartilage explants culture. Results : Interleukin-la (IL-1a) rapidly induced GAG, but collagen was much less readily released from cartilage explants. Aralia cordata Thunb. significantly inhibited GAG and collagen release in a concentration-dependent manner. Aralia cordata Thunb. dose-dependently inhibited MMP-3 and MMP-13 expression and activities from IL-1a-treated cartilage explants cultures when tested at concentrations ranging from 0.02 to 0.2 mg/ml. Aralia cordata Thunb. had no harmful effect on chondrocytes viability or cartilage morphology in cartilage explants. Histological analysis indicated that Aralia cordata Thunb. reduced the degradation of the cartilage matrix compared with that of IL -1a-treated cartilage explants.

  • PDF

The effect of Astragalus membranaceus methanol extract on hyaluronic acid production in HaCaT cells (황기 메탄올 추출물이 HaCaT 세포에서 Hyaluronic acid 생성에 미치는 영향)

  • Lee, Pyeong-Jae;Kim, Hee-Taek;Yoon, Kyung-Sup;Park, Hyun-Chul;Ha, Hun-Yong
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.26 no.1
    • /
    • pp.75-81
    • /
    • 2013
  • Objectives: Hyaluronic acid, high molecular glycosaminoglycan, exists in extracellular matrix of tissue, especially, in skin and has been known to be deeply involved in skin hydration. In this study, we investigated the effect of methanol extract of Hwang-gi, Astragalus membranaceus root, on hyaluronic acid production in human keratinocyte HaCaT cells. Methods: We determined hyaluronic acid synthase 2 gene expression and hyaluronic acid production in HaCaT cells by using RT-PCR and ELISA, respectively. Results: Hwang-gi extract didn't show the toxicity to HaCaT cells within the treated concentration and increased the hyaluronic acid synthase 2 gene expression and hyaluronic acid production. Conclusions: Hyaluronic acid production increased by Hwang-gi could be, partially, contribute to the moisturing effect in skin by it.

Decorin: a multifunctional proteoglycan involved in oocyte maturation and trophoblast migration

  • Park, Beom Seok;Lee, Jaewang;Jun, Jin Hyun
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.48 no.4
    • /
    • pp.303-310
    • /
    • 2021
  • Decorin (DCN) is a proteoglycan belonging to the small leucine-rich proteoglycan family. It is composed of a protein core containing leucine repeats with a glycosaminoglycan chain consisting of either chondroitin sulfate or dermatan sulfate. DCN is a structural component of connective tissues that can bind to type I collagen. It plays a role in the assembly of the extracellular matrix (ECM), and it is related to fibrillogenesis. It can interact with fibronectin, thrombospondin, complement component C1, transforming growth factor (TGF), and epidermal growth factor receptor. Normal DCN expression regulates a wide range of cellular processes, including proliferation, migration, apoptosis, and autophagy, through interactions with various molecules. However, its aberrant expression is associated with oocyte maturation, oocyte quality, and poor extravillous trophoblast invasion of the uterus, which underlies the occurrence of preeclampsia and intrauterine growth restriction. Spatiotemporal hormonal control of successful pregnancy should regulate the concentration and activity of specific proteins such as proteoglycan participating in the ECM remodeling of trophoblastic and uterine cells in fetal membranes and uterus. At the human feto-maternal interface, TGF-β and DCN play crucial roles in the regulation of trophoblast invasion of the uterus. This review summarizes the role of the proteoglycan DCN as an important and multifunctional molecule in the physiological regulation of oocyte maturation and trophoblast migration. This review also shows that recombinant DCN proteins might be useful for substantiating diverse functions in both animal and in vitro models of oogenesis and implantation.