• Title/Summary/Keyword: Glycosaminoglycan

Search Result 110, Processing Time 0.02 seconds

Effects of Glycosaminoglycan on the Development of In vitro Fertilized Mouse Embryo (Glycosaminoglycan이 생쥐 수정란의 체외 발달에 미치는 영향)

  • Kim, J.W.;Seo, D.S.;Yoon, S.H.;Ko, Y.
    • Korean Journal of Animal Reproduction
    • /
    • v.24 no.3
    • /
    • pp.269-279
    • /
    • 2000
  • The present study was carried out to evaluate the effect of glycosaminoglycans added to the culture medium on the mouse embryo development to the blastocyst stage. In vitro fertilized mouse oocytes were cultured in Ham's F-10 supplemented with 10% FBS either in the absence or presence of 0.1, 0.5, 1.0 mg/$m\ell$ hyaluronic acid, chondroitin sulfate, and dermatan sulfate, respectively. After 4 days in culture, embryos developed to blastocysts were observed in all groups. There was a significant increase in blastocyst yield in the presence of hyaluronic acid and chondroitin sulfate (p<0.05), whereas dermatan sulfate was ineffective. Development to the blastocyst stage was best supported in 0.1, 0.5, 1.0 mg/$m\ell$ hyaluronic acid and 0.5mg/$m\ell$ chondroitin sulfate. It is concluded that hyaluronic acid and chondroitin sulfate support the development of mouse oocyte fertilized in vitro to the blastocyst stage. Furthermore, these results suggest that glycosaminoglycans can be utilized to support embryo development in vitro as a nutrient instead of serum.

  • PDF

Regeneration of Intervertebral Disc Using Poly(lactic-co-glycolic acid) Scaffolds Included Demineralized Bone Particle In Vivo (In vivo 상에서 탈미네랄화된 골분이 함유된 PLGA 지지체를 이용한 추간판 디스크 재생)

  • Jang, Ji Eun;Kim, Hye Yoon;Song, Jeong Eun;Lee, Dongwon;Kwon, Soon Yong;Chung, Jin Wha;Khang, Gilson
    • Polymer(Korea)
    • /
    • v.37 no.6
    • /
    • pp.669-676
    • /
    • 2013
  • Demineralized bone particle (DBP) is a biomaterial used widely in the field of tissue engineering. In this study, in order to study the effect of DBP/poly(lactic-co-glycolic acid) (PLGA) scaffold on disc regeneration in vivo environment, we prepared the porous DBP/PLGA hybrid scaffold. Disc defect was induced by removing the nucleus pulposus tissue after incision the annulus fibrosus tissue in half and scaffolds were transplanted. After 1, 2 and 3 months later, the extracted discs were confirmed by collagen synthesis and glycosaminoglycan (sGAG). We conducted histology (H&E, Safranin-O, Alcian blue, Type I Collagen, Type II Collagen). From the results, it was confirmed that collagen and sGAG content were high in DBP/PLGA scaffold, and the regeneration of intervertebral disc was possible.

EFFECT OF SODIUM HYALURONATE IN TREATING TEMPOROMANDIBULAR JOINT DISORDERS (턱관절 질환 치료 시 Sodium Hyaluronate의 효과)

  • Moon, Chul-Woong;Kim, Su-Gwan
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.28 no.3
    • /
    • pp.262-267
    • /
    • 2006
  • The term temporomandibular disorders is used to describe a group of conditions that involve the temporomandibular joint, masticatory muscles, and associated structures. Many modalities have been proposed for treating temporomandibular disorders, including medication, physical therapy, occlusal stabilization splints with or without manual repositioning, surgery, and arthrocentesis. Temporomandibular disorders are treated in a step-wise manner. Initially, conservative treatment is used. Depending on the response, more aggressive interventions may be necessary. This usually takes the form of arthrocentesis. Arthrocentesis is used in the treatment of not only acute, closed, and locked TMJs but also various other temporomandibular disorders. Recently, the intra-articular injection of sodium hyaluronate after arthrocentesis was shown to have long-term palliative effects on TMJ symptoms. Synovial fluid consists of plasma and glycosaminoglycan, including hyaluronic acid derived from synovial cells. Sodium hyaluronate, the sodium salt of hyaluronic acid, is a high-molecular-weight polysaccharide and a major component of synovial fluid. This highly viscous substance has analgesic properties, lubricant effects, and anti-inflammatory actions; it causes cartilage formation and plays a role in the nutrition of avascular parts of the disc and condylar cartilage. We conclude that the intra-articular injection of sodium hyaluronate is effective for treating temporomandibular disorders.

Inhibitory Effect of Astragali Radix on Matrix Degradation in Human Articular Cartilage

  • CHOI SOOIM;PARK SO-RA;HEO TAE-RYEON
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1258-1266
    • /
    • 2005
  • The present study was carried out in order to assess the protective effects of calycosin-7-O-$\beta$-D-glucopyranoside, isolated from Astragali radix (AR), on hyaluronidase (HAase) and the recombinant human interleukin-$1\beta$ (IL-$1\beta$)-induced matrix degradation in human articular cartilage and chondrocytes. We isolated the active component from the n-butanol soluble fraction of AR (ARBu) as the HAase inhibitor and structurally identified as calycosin-7-O-$\beta$-D-glucopyranoside by LC-MS, IR, ${1}^H$ NMR, and ${13}^C$ NMR analyses. The $IC_{50}$ of this component on HAase was found to be 3.7 mg/ml by in vitro agarose plate assay. The protective effect of ARBu on the matrix gene expression of immortalized chondrocyte cell line C28/I2 treated with HAase was investigated using a reverse transcription polymerase chain reaction (RT-PCR), and its effect on HAase and IL-$1\beta$-induced matrix degradation in human articular cartilage was determined by a staining method and calculating the amount of degraded glycosaminoglycan (GAG) from the cultured media. Pretreatment with calycosin-7-O-$\beta$-D-glucopyranoside effectively protected human chondrocytes and articular cartilage from matrix degradation. Therefore, calycosin-7-O-$\beta$-D-glucopyranoside from AR appears to be a potential natural ant-inflammatory or antii-osteoarthritis agent and can be effectively used to protect from proteoglycan (PG) degradation.

Three-Dimensional Porous Collagen/Chitosan Complex Sponge for Tissue Engineering

  • Kim, Sung Eun;Cho, Yong Woo;Kang, Eun Jung;Kwon, Ick Chan;Lee, Eunhee Bae;Kim, Jung Hyun;Chung, Hesson;Jeong, Seo Young
    • Fibers and Polymers
    • /
    • v.2 no.2
    • /
    • pp.64-70
    • /
    • 2001
  • A three-dimensional, porous collagen/chitosan complex sponge was prepared to closely simulate basic extracellular matrix (ECM) constitutes, collagen and glycosaminoglycan. The complex sponge was prepared by a lyophilization method and had the regular network with highly porous structure, suitable for cell adhesion and growth. The pores were well interconnected, and their distribution was fairly homogeneous. The complex sponge was crosslinked using 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) to increase its boilogical stability and enhance its mechanical properties. The crosslinking medium has a great effect on the inner structure of the sponge. The homogeneous, porous structure of the sponge was remarkably collapsed in an aqueous crosslinking medium. However, the morphology of the sponge remained almost intact in a water/ethanol mixture crosslinking milieu. Mechanical properties of the collagen/chitosan sponge were significantly enhanced by EDC-mediated crosslinking. The potential of the sponge as a scaffold for tissue engineering was investigated using a Chinese hamster ovary cell (CHO-K1) line.

  • PDF

Sulodexide inhibits retinal neovascularization in a mouse model of oxygen-induced retinopathy

  • Jo, Hyoung;Jung, Sang Hoon;Kang, Jun;Yim, Hye Bin;Kang, Kui Dong
    • BMB Reports
    • /
    • v.47 no.11
    • /
    • pp.637-642
    • /
    • 2014
  • Sulodexide is a mixed glycosaminoglycan composed of heparin and dermatan sulfate. In this study, the anti-angiogenic effect of sulodexide was investigated using an oxygen-induced retinopathy (OIR) mouse model. The retinas of sham-injected OIR mice (P17) had a distinctive central area of nonperfusion, and this area was significantly decreased in sulodexide-injected mice. The number of neovascular tufts measured by SWIFT_NV and mean neovascular lumen number were significantly decreased in sulodexide-injected mice. Hyperbaric oxygen exposure resulted in increased levels of VEGF, MMP-2 and MMP-9, and when mice were treated with sulodexide, a dose-dependent reduction in VEGF, MMP-2 and MMP-9 levels was observed. Our results clearly demonstrate the anti-angiogenic effect of sulodexide and highlight sulodexide as a candidate supplementary substance to be used for the treatment of ocular pathologies that involve neovascularization.

Pharmacological Activities and Applications of Spicatoside A

  • Ramalingam, Mahesh;Kim, Sung-Jin
    • Biomolecules & Therapeutics
    • /
    • v.24 no.5
    • /
    • pp.469-474
    • /
    • 2016
  • Liriopogons (Liriope and Opiopogon) species are used as a main medicinal ingredient in several Asian countries. The Liriopes Radix (tuber, root of Liriope platyphylla) has to be a promising candidate due to their source of phytochemicals. Steroidal saponins and their glycosides, phenolic compounds, secondary metabolites are considered of active constituents in Liriopes Radix. Spicatoside A, a steroidal saponin, could be more efficacious drug candidate in future. In this review, we summarized the available knowledge on phytochemical and pharmacological activities for spicatoside A. It significantly suppressed the level of NF-${\kappa}B$, NO, iNOS, Cox-2, IL-$1{\beta}$, IL-6 and MAPKs in LPS-stimulated inflammation. The production of MUC5AC mucin was increased. MMP-13 expression was down-regulated in IL-$1{\beta}$-treated cells and reduced glycosaminoglycan release from IL-$1{\alpha}$-treated cells. The neurite outgrowth activity, PI3K, Akt, ERK1/2, TrkA and CREB phosphorylation and neurotropic factors such as NGF and BDNF were upregulated with increased latency time. It also showed cell growth inhibitory activity on various carcinoma cells. From this, spicatoside A exerts anti-inflammation, anti-asthma, anti-osteoclastogenesis, neurite outgrowth, memory consolidation and anticancer activities. Further studies are needed on spicatoside A in order to understand mechanisms of action to treat various human diseases.

The effect of Astragalus membranaceus methanol extract on hyaluronic acid production in HaCaT cells (황기 메탄올 추출물이 HaCaT 세포에서 Hyaluronic acid 생성에 미치는 영향)

  • Lee, Pyeong-Jae;Kim, Hee-Taek;Yoon, Kyung-Sup;Park, Hyun-Chul;Ha, Hun-Yong
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.26 no.1
    • /
    • pp.75-81
    • /
    • 2013
  • Objectives: Hyaluronic acid, high molecular glycosaminoglycan, exists in extracellular matrix of tissue, especially, in skin and has been known to be deeply involved in skin hydration. In this study, we investigated the effect of methanol extract of Hwang-gi, Astragalus membranaceus root, on hyaluronic acid production in human keratinocyte HaCaT cells. Methods: We determined hyaluronic acid synthase 2 gene expression and hyaluronic acid production in HaCaT cells by using RT-PCR and ELISA, respectively. Results: Hwang-gi extract didn't show the toxicity to HaCaT cells within the treated concentration and increased the hyaluronic acid synthase 2 gene expression and hyaluronic acid production. Conclusions: Hyaluronic acid production increased by Hwang-gi could be, partially, contribute to the moisturing effect in skin by it.

Effect of Oncostatin M on Wound Healing Activity of Diabetic Fibroblasts in vitro (Oncostatin M이 당뇨 환자 섬유모세포의 창상치유능에 미치는 영향)

  • Lim, Hyung Woo;Chun, Kyung Wook;Han, Seung-Kyu;Kim, Woo Kyung
    • Archives of Plastic Surgery
    • /
    • v.35 no.4
    • /
    • pp.355-359
    • /
    • 2008
  • Purpose: Oncostatin M(OSM) has been known as a role in fibrosis and anti-inflammatory effects of various organs and tissues. Although there have been a number of studies which are focused on the roles and mechanisms of OSM, there are few reports on its effects in chronic wound healing. The purpose of this study is to evaluate the effects of OSM in wound healing activities of dermal fibroblasts of chronic wound in vitro. In particular, this study is focused on cell proliferation and synthesis of collagen and glycosaminoglycan(GAG), which are the major components of the extracellular matrices, of diabetic fibroblasts. Methods: Fibroblasts were isolated from excess skin that was obtained from diabetic foot ulcer patients who underwent debridement. The isolated fibroblasts were cultivated in presence of OSM(100 ng/mL). Cell proliferation, collagen synthesis and GAG levels were compared. Results: All the components tested in this study increased in OSM treatment group. In particular, collagen and GAG synthesis demonstrated statistically significant increases(p<0.05 in the Mann-Whitney U-test). Conclusion: These results indicate that OSM increases wound healing activities of dermal fibroblasts of chronic wound in vitro.

Low Level Laser Therapy for Two Patients with Herniated Nucleus Pulposus (척추 추간판 탈출증의 저출력 레이저에 의한 치험 2예)

  • Kim, Young-Choo;Kim, Hae-Gyu;Baik, Seong-Wan;Kim, Inn-Se;Jung, Kyoo-Sub
    • The Korean Journal of Pain
    • /
    • v.4 no.1
    • /
    • pp.51-55
    • /
    • 1991
  • There is a variety of therapeutic modality for herniated nucleus pulposus. Recently the low level laser has come into use for treatment for it. We treated two patients suffered from herniated nucleus pulposus of the central type of $L_{3,4}$ level, with He-Ne, $CO_2$ and Ga Al As laser simultaneously daily under hospitalization. In order to determine the efficacy of treatment, we used the "visual analogue scale" and its improvement rate. The results were as follows; Case I complained of gait disturbance, and hypoesthesia on the lateral side of the left lower leg, as and as low back pain. At the 15th day after treatment, VAS improvement rate was 40%, and the gait disturbance and hypoesthesia were markedly improved. 35th days after tratement, VAS improvement rate was 80%. Case II complained only of low back pain. At the 15th day after treatment, the VAS improvement rate was 68%, and at 20 days after treatment it was 84%. We sugsest that, using the low level laser for treatment of herniated nucleus pulposus increased the cartilage entrophism, and inhibitory effects of the inflammatory materials such as acid glycosaminoglycan by its anti-inflammatory and analgesic effects.

  • PDF