Browse > Article
http://dx.doi.org/10.5483/BMBRep.2014.47.11.009

Sulodexide inhibits retinal neovascularization in a mouse model of oxygen-induced retinopathy  

Jo, Hyoung (Functional Food Center, Korea Institute of Science and Technology (KIST) Gangneung Institute)
Jung, Sang Hoon (Functional Food Center, Korea Institute of Science and Technology (KIST) Gangneung Institute)
Kang, Jun (Department of Pathology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea)
Yim, Hye Bin (Department of Ophthalmology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea)
Kang, Kui Dong (Department of Ophthalmology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea)
Publication Information
BMB Reports / v.47, no.11, 2014 , pp. 637-642 More about this Journal
Abstract
Sulodexide is a mixed glycosaminoglycan composed of heparin and dermatan sulfate. In this study, the anti-angiogenic effect of sulodexide was investigated using an oxygen-induced retinopathy (OIR) mouse model. The retinas of sham-injected OIR mice (P17) had a distinctive central area of nonperfusion, and this area was significantly decreased in sulodexide-injected mice. The number of neovascular tufts measured by SWIFT_NV and mean neovascular lumen number were significantly decreased in sulodexide-injected mice. Hyperbaric oxygen exposure resulted in increased levels of VEGF, MMP-2 and MMP-9, and when mice were treated with sulodexide, a dose-dependent reduction in VEGF, MMP-2 and MMP-9 levels was observed. Our results clearly demonstrate the anti-angiogenic effect of sulodexide and highlight sulodexide as a candidate supplementary substance to be used for the treatment of ocular pathologies that involve neovascularization.
Keywords
Angiogenesis; MMP; Retinopathy; Sulodexide; VEGF;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Aiello, L. P., Pierce, E. A., Foley, E. D., Takagi, H., Chen, H., Riddle, L., Ferrara, N., King, G. L. and Smith, L. E. (1995) Suppression of retinal neovascularization in vivo by inhibition of vascular endothelial growth factor (VEGF) using soluble VEGF-receptor chimeric proteins. Proc. Natl. Acad. Sci. U. S. A. 92, 10457-10461.   DOI   ScienceOn
2 Kim, J, Kim, S. J., Chang, Y. S. and Park, W. S. (2014) Combined intravitreal bevacizumab injection and zone I sparing laser photocoagulation in patients with zone I retinopathy of prematurity. Retina 34, 77-82.   DOI
3 Simpson, J. L., Melia, M., Yang, M. B., Buffenn, A. N., Chiang, M. F. and Lambert, S. R. (2012) Current role of cryotherapy in retinopathy of prematurity: a report by the American Academy of Ophthalmology. Ophthalmology 119, 873-877.   DOI   ScienceOn
4 Condorelli, M., Chiariello, M., Dagianti, A., Penco, M., Dalla Volta, S., Pengo, V., Schivazappa, L., Mattioli, G., Mattioli, A. V. and Brusoni, B. (1994) IPO-V2: a prospective, multicenter, randomized, comparative clinical investigation of the effects of sulodexide in preventing cardiovascular accidents in the first year after acute myocardial infarction. J. Am. Coll. Cardiol. 23, 27-34.   DOI   ScienceOn
5 Lasierra-Cirujeda, J., Coronel, P., Aza, M. and Gimeno, M. (2010) Use of sulodexide in patients with peripheral vascular disease. J. Blood Med. 1, 105-115.
6 Kristova, V., Liskova, S., Sotnikova, R., Vojtko, R. and Kurtansky, A. (2008) Sulodexide improves endothelial dysfunction in streptozotocin-induced diabetes in rats. Physiol. Res. 57, 491-494.
7 Corbu, C., Predoi, D. and Goicea, D. (1996) Sulodexide treatment in retinal vein obstructions. Oftalmologia 40, 393-397.
8 Weiss, R., Niecestro, R. and Raz, I. (2007) The role of sulodexide in the treatment of diabetic nephropathy. Drugs 67, 2681-2696.   DOI   ScienceOn
9 Harenberg, J. (1998) Review of pharmacodynamics, pharmacokinetics, and therapeutic properties of sulodexide. Med. Res. Rev. 18, 1-20.   DOI   ScienceOn
10 Oshima, Y., Oshima, S., Nambu, H., Kachi, S., Hackett, S. F., Melia, M., Kaleko, M., Connelly, S., Esumi, N., Zack, D. J. and Campochiaro, P. A. (2004) Increased expression of VEGF in retinal pigmented epithelial cells is not sufficient to cause choroidal neovascularization. J. Cell Physiol. 201, 393-400.   DOI   ScienceOn
11 Hollborn, M., Stathopoulos, C., Steffen, A., Wiedemann, P., Kohen, L. and Bringmann, A. (2007) Positive feedback regulation between MMP-9 and VEGF in human RPE cells. Invest. Ophthalmol. Vis. Sci. 48, 4360-4367.   DOI   ScienceOn
12 Lauver, D. A. and Lucchesi, B. R. (2006) Sulodexide: a renewed interest in this glycosaminoglycan. Cardiovasc. Drug Rev. 24, 214-226.   DOI   ScienceOn
13 Pletinck, A., Van Landschoot, M., Steppan, S., Laukens, D., Passlick-Deetjen, J., Vanholder, R. and Van Biesen, W. (2012) Oral supplementation with sulodexide inhibits neo-angiogenesis in a rat model of peritoneal perfusion. Nephrol. Dial. Transplant. 27, 548-556.   DOI   ScienceOn
14 Simonetti, O., Lucarini, G., Brancorsini, D., Nita, P., Bernardini, M. L., Biagini, G. and Offidani, A. (2002) Immunohistochemical expression of vascular endothelial growth factor, matrix metalloproteinase 2, and matrix metalloproteinase 9 in cutaneous melanocytic lesions. Cancer 95, 1963-1970.   DOI   ScienceOn
15 Yafai, Y., Iandiev, I., Wiedemann, P., Reichenbach, A. and Eichler, W. (2004) Retinal endothelial angiogenic activity: effects of hypoxia and glial (Muller) cells. Microcirculation 11, 577-586.   DOI   ScienceOn
16 Pennock, S. and Kazlauskas, A. (2012) Vascular endothelial growth factor A competitively inhibits platelet-derived growth factor (PDGF)-dependent activation of PDGF receptor and subsequent signaling events and cellular responses. Mol. Cell Biol. 32, 1955-1966.   DOI
17 DeNiro, M., Al-Mohanna, F. H. and Al-Mohanna, F. A. (2011) Inhibition of reactive gliosis prevents neovascular growth in the mouse model of oxygen-induced retinopathy. PLoS One 6, e22244.   DOI
18 Packham, D. K., Wolfe, R., Reutens, A. T., Berl, T., Heerspink, H. L., Rohde, R., Ivory, S., Lewis, J., Raz, I., Wiegmann, T. B., Chan, J. C., de Zeeuw, D., Lewis, E. J. and Atkins, R. C. (2012) Sulodexide fails to demonstrate renoprotection in overt type 2 diabetic nephropathy. J. Am. Soc. Nephrol. 23, 123-130.   DOI
19 Gambaro, G., Kinalska, I., Oksa, A., Pont'uch, P., Hertlova, M., Olsovsky, J., Manitius, J., Fedele, D., Czekalski, S., Perusicova, J., Skrha, J., Taton, J., Grzeszczak, W. and Crepaldi, G. (2002) Oral sulodexide reduces albuminuria in microalbuminuric and macroalbuminuric type 1 and type 2 diabetic patients: the Di.N.A.S. randomized trial. J. Am. Soc. Nephrol. 13, 1615-1625.   DOI   ScienceOn
20 Broekhuizen, L. N., Lemkes, B. A., Mooij, H. L., Meuwese, M. C., Verberne, H., Holleman, F., Schlingemann, R. O., Nieuwdorp, M., Stroes, E. S. and Vink, H. (2010) Effect of sulodexide on endothelial glycocalyx and vascular permeability in patients with type 2 diabetes mellitus. Diabetologia 53, 2646-2655.   DOI
21 Kim, N. H., Oh, J. H., Seo, J. A., Lee, K. W., Kim, S. G., Choi, K. M., Baik, S. H., Choi, D. S., Kang, Y. S., Han, S. Y., Han, K. H., Ji, Y. H. and Cha, D. R. (2005) Vascular endothelial growth factor (VEGF) and soluble VEGF receptor FLT-1 in diabetic nephropathy. Kidney Int. 67, 167-177.   DOI   ScienceOn
22 Smith, L. E., Wesolowski, E., McLellan, A., Kostyk, S. K., D'Amato, R., Sullivan, R. and D'Amore, P. A. (1994) Oxygen-induced retinopathy in the mouse. Invest. Ophthalmol. Vis. Sci. 35, 101-111.
23 Li, S., Li, T., Luo, Y., Yu, H., Sun, Y., Zhou, H., Liang, X., Huang, J. and Tang, S. (2011) Retro-orbital injection of FITC-dextran is an effective and economical method for observing mouse retinal vessels. Mol. Vis. 17, 3566-3573.
24 Watanabe, D., Suzuma, K., Suzuma, I., Ohashi, H., Ojima, T., Kurimoto, M., Murakami, T., Kimura, T. and Takagi, H. (2005) Vitreous levels of angiopoietin 2 and vascular endothelial growth factor in patients with proliferative diabetic retinopathy. Am. J. Ophthalmol. 139, 476-481.   DOI   ScienceOn
25 Nanni, C., Pettinato, C., Ambrosini, V., Spinelli, A., Trespidi, S., Rubello, D., Al-Nahhas, A., Franchi, R., Alavi, A. and Fanti, S. (2007) Retro-orbital injection is an effective route for radiopharmaceutical administration in mice during small-animal PET studies. Nucl. Med. Commun. 28, 547-553.   DOI   ScienceOn
26 Connor, K. M., Krah, N. M., Dennison, R. J., Aderman, C. M., Chen, J., Guerin, K. I., Sapieha, P., Stahl, A., Willett, K. L. and Smith, L. E. (2009) Quantification of oxygen-induced retinopathy in the mouse: a model of vessel loss, vessel regrowth and pathological angiogenesis. Nat. Protoc. 4, 1565-1573.   DOI   ScienceOn