• 제목/요약/키워드: Glycogen synthase kinase $3{\beta}$

검색결과 64건 처리시간 0.026초

20(S)-protopanaxadiol promotes the migration, proliferation, and differentiation of neural stem cells by targeting GSK-3β in the Wnt/GSK-3β/β-catenin pathway

  • Lin, Kaili;Liu, Bin;Lim, Sze-Lam;Fu, Xiuqiong;Sze, Stephen C.W.;Yung, Ken K.L.;Zhang, Shiqing
    • Journal of Ginseng Research
    • /
    • 제44권3호
    • /
    • pp.475-482
    • /
    • 2020
  • Background: Active natural ingredients, especially small molecules, have recently received wide attention as modifiers used to treat neurodegenerative disease by promoting neurogenic regeneration of neural stem cell (NSC) in situ. 20(S)-protopanaxadiol (PPD), one of the bioactive ingredients in ginseng, possesses neuroprotective properties. However, the effect of PPD on NSC proliferation and differentiation and its mechanism of action are incompletely understood. Methods: In this study, we investigated the impact of PPD on NSC proliferation and neuronal lineage differentiation through activation of the Wnt/glycogen synthase kinase (GSK)-3β/β-catenin pathway. NSC migration and proliferation were investigated by neurosphere assay, Cell Counting Kit-8 assay, and EdU assay. NSC differentiation was analyzed by Western blot and immunofluorescence staining. Involvement of the Wnt/GSK3β/β-catenin pathway was examined by molecular simulation and Western blot and verified using gene transfection. Results: PPD significantly promoted neural migration and induced a significant increase in NSC proliferation in a time- and dose-dependent manner. Furthermore, a remarkable increase in anti-microtubule-associated protein 2 expression and decrease in nestin protein expression were induced by PPD. During the differentiation process, PPD targeted and stimulated the phosphorylation of GSK-3β at Ser9 and the active forms of β-catenin, resulting in activation of the Wnt/GSK-3β/β-catenin pathway. Transfection of NSCs with a constitutively active GSK-3β mutant at S9A significantly hampered the proliferation and neural differentiation mediated by PPD. Conclusion: PPD promotes NSC proliferation and neural differentiation in vitro via activation of the Wnt/GSK-3β/β-catenin pathway by targeting GSK-3β, potentially having great significance for the treatment of neurodegenerative diseases.

AGS 인체 위암 세포에서 Akt/mTOR/GSK-3β 신호경로 조절을 통한 개똥쑥 추출물의 Apoptosis 유도 효과 (Apoptosis-Induced Effects of Extract from Artemisia annua Linné by Modulating Akt/mTOR/GSK-3β Signal Pathway in AGS Human Gastric Carcinoma Cells)

  • 김은지;김근태;김보민;임은경;김상용;김영민
    • 한국식품영양과학회지
    • /
    • 제45권9호
    • /
    • pp.1257-1264
    • /
    • 2016
  • 개똥쑥은 예로부터 항암, 항바이러스 및 항균의 효능을 지니는 것으로 알려져 왔지만 작용 기작에 대한 내용이 많이 알려지지 않았다. 본 연구에서는 AGS 인체 위암 세포를 대상으로 개똥쑥 추출물(AAE)에 의한 apoptosis 효과와 신호경로 연구를 시행하였다. AAE의 암세포 성장에 미치는 영향을 확인하기 위하여 AGS cell에 AAE를 처리하고 MTT assay와 LDH assay를 수행한 결과 AAE 농도 의존적으로 나타난 세포 성장 억제가 세포 손상에 의한 것임을 확인하였다. 또한, AAE에 의한 암세포 증식 억제 효과가 apoptosis에 의한 것인지 확인하기 위하여 Hoechst 33342 staining과 Annexin V-PI staining을 수행한 결과, Hoechst 33342 staining에서 apoptotic body와 세포질 응축이 농도 의존적으로 증가하는 것을 확인하였고, Annexin V-PI staining에서 apoptotic cells의 변화가 농도 의존적으로 증가함을 확인하였다. Western blotting의 결과 AAE가 농도 의존적으로 세포 생장에 관여하는 신호 단백질인 p-Akt, p-TSC2, p-mTOR, p-GSK-$3{\beta}$의 발현이 감소함을 확인하였고, anti-apoptotic 단백질인 Bcl-2의 발현이 억제됨으로써 proapoptotic 단백질인 Bax, Bak의 발현이 증가하는 일련의 신호경로를 조절할 수 있다는 것을 확인하였다. 미토콘드리아 막 전위의 탈분극 유도를 확인하기 위한 JC-1 assay 수행 결과, AAE 농도 의존적으로 미토콘드리아 막 전위의 탈분극이 유도됨을 확인하였다. 탈분극에 의한 caspase 활성을 확인하기 위해 caspase-3/7 activity assay를 수행한 결과, AAE 농도 의존적으로 caspase activity 증가를 확인하였다. 또한, apoptosis가 일어나는 일련의 신호경로를 확인하기 위해 apoptosis 상위 단백질인 Akt, mTOR, GSK-$3{\beta}$의 활성을 억제하는 LY294002, Rapamycin, BIO를 각각 AGS cell에 처리하고 세포증식에 미치는 영향과 신호 단백질의 발현 양상을 알아보기 위해 MTT assay, LDH assay, western blotting을 수행하였다. 그 결과 AAE와 LY294002, Rapamycin 처리군에서 세포증식 억제와 LDH 방출량 증가뿐만 아니라 세포 생장 신호 단백질인 p-mTOR, p-TSC2, p-Akt, p-GSK-$3{\beta}$의 발현이 감소하는 것을 확인하였고, Bcl-2의 발현이 억제됨으로써 Bax와 Bak의 발현을 증가시키는 신호경로를 조절할 수 있다는 것을 확인하였다. 따라서 AGS cell에 개똥쑥 추출물을 처리하였을 때 유도되는 apoptosis 효과는 Akt/mTOR/GSK-$3{\beta}$ 경로 활성 억제를 통해 Bcl-2 발현이 감소함에 따라 Bax, Bak를 활성화해 세포질로의 cytochrome C 유리에 따른 caspase 활성으로 이루어진다는 것을 알 수 있었다.

Vanillic Acid Stimulates Anagen Signaling via the PI3K/Akt/β-Catenin Pathway in Dermal Papilla Cells

  • Kang, Jung-Il;Choi, Youn Kyung;Koh, Young-Sang;Hyun, Jin-Won;Kang, Ji-Hoon;Lee, Kwang Sik;Lee, Chun Mong;Yoo, Eun-Sook;Kang, Hee-Kyoung
    • Biomolecules & Therapeutics
    • /
    • 제28권4호
    • /
    • pp.354-360
    • /
    • 2020
  • The hair cycle (anagen, catagen, and telogen) is regulated by the interaction between mesenchymal cells and epithelial cells in the hair follicles. The proliferation of dermal papilla cells (DPCs), mesenchymal-derived fibroblasts, has emerged as a target for the regulation of the hair cycle. Here, we show that vanillic acid, a phenolic acid from wheat bran, promotes the proliferation of DPCs via a PI3K/Akt/Wnt/β-catenin dependent mechanism. Vanillic acid promoted the proliferation of DPCs, accompanied by increased levels of cell-cycle proteins cyclin D1, CDK6, and Cdc2 p34. Vanillic acid also increased the levels of phospho(ser473)-Akt, phospho(ser780)-pRB, and phospho(thr37/46)-4EBP1 in a time-dependent manner. Wortmannin, an inhibitor of the PI3K/Akt pathway, attenuated the vanillic acid-mediated proliferation of DPCs. Vanillic acid-induced progression of the cell-cycle was also suppressed by wortmannin. Moreover, vanillic acid increased the levels of Wnt/β-catenin proteins, such as phospho(ser9)-glycogen synthase kinase-3β, phospho(ser552)-β-catenin, and phospho(ser675)-β-catenin. We found that vanillic acid increased the levels of cyclin D1 and Cox-2, which are target genes of β-catenin, and these changes were inhibited by wortmannin. To investigate whether vanillic acid affects the downregulation of β-catenin by dihydrotestosterone (DHT), implicated in the development of androgenetic alopecia, DPCs were stimulated with DHT in the presence and absence of vanillic acid for 24 h. Western blotting and confocal microscopy analyses showed that the decreased level of β-catenin after the incubation with DHT was reversed by vanillic acid. These results suggest that vanillic acid could stimulate anagen and alleviate hair loss by activating the PI3K/Akt and Wnt/β-catenin pathways in DPCs.

Systemic TM4SF5 overexpression in ApcMin/+ mice promotes hepatic portal hypertension associated with fibrosis

  • Joohyeong, Lee;Eunmi, Kim;Min-Kyung, Kang;Jihye, Ryu;Ji Eon, Kim;Eun-Ae, Shin;Yangie, Pinanga;Kyung-hee, Pyo;Haesong, Lee;Eun Hae, Lee;Heejin, Cho;Jayeon, Cheon;Wonsik, Kim;Eek-Hoon, Jho;Semi, Kim;Jung Weon, Lee
    • BMB Reports
    • /
    • 제55권12호
    • /
    • pp.609-614
    • /
    • 2022
  • Mutation of the gene for adenomatous polyposis coli (APC), as seen in ApcMin/+ mice, leads to intestinal adenomas and carcinomas via stabilization of β-catenin. Transmembrane 4 L six family member 5 (TM4SF5) is involved in the development of non-alcoholic fatty liver disease, fibrosis, and cancer. However, the functional linkage between TM4SF5 and APC or β-catenin has not been investigated for pathological outcomes. After interbreeding ApcMin/+ with TM4SF5-overexpressing transgenic (TgTM4SF5) mice, we explored pathological outcomes in the intestines and livers of the offspring. The intestines of 26-week-old dual-transgenic mice (ApcMin/+:TgTM4SF5) had intramucosal adenocarcinomas beyond the single-crypt adenomas in ApcMin/+ mice. Additional TM4SF5 overexpression increased the stabilization of β-catenin via reduced glycogen synthase kinase 3β (GSK3β) phosphorylation on Ser9. Additionally, the livers of the dualtransgenic mice showed distinct sinusoidal dilatation and features of hepatic portal hypertension associated with fibrosis, more than did the relatively normal livers in ApcMin/+ mice. Interestingly, TM4SF5 overexpression in the liver was positively linked to increased GSK3β phosphorylation (opposite to that seen in the colon), β-catenin level, and extracellular matrix (ECM) protein expression, indicating fibrotic phenotypes. Consistent with these results, 78-week-old TgTM4SF5 mice similarly had sinusoidal dilatation, immune cell infiltration, and fibrosis. Altogether, systemic overexpression of TM4SF5 aggravates pathological abnormalities in both the colon and the liver.