• 제목/요약/키워드: Glycogen synthase kinase

검색결과 92건 처리시간 0.02초

AMPK 활성화를 통한 목통의 항산화 효과 (Akebiae Caulis Inhibits Oxidative Stress through AM PK Activation)

  • 정은혜;김상찬;조일제;김영우
    • 동의생리병리학회지
    • /
    • 제29권1호
    • /
    • pp.18-26
    • /
    • 2015
  • Akebiae Caulis is a galenical originated from Akebia quinata Decaisne species. It is commonly used in the treatment of oposiuria, inflammation, nociceptive and fever. Here, we investigated the effect of Akebiae Caulis extract (ACE) to protect hepatocyte against the malfunction of mitochondria and apoptosis. Arachidonic acid (AA)+iron promoted excessive reactive oxygen species (ROS) production and exerted a deleterious effect on mitochondria. Treatment with ACE protected hepatocytes from AA+iron-induced cytotoxicity, as shown by alterations in the protein levels related with apoptosis such as poly(ADP-ribose) polymerase, pro-caspase 3, Bcl-XL and Bcl-2. Moreover, AA+iron-induced $H_2O_2$ production, GSH depletion and mitochondrial dysfunction were alleviated by ACE pretreatment. As a potential molecular mechanism for the ACE-mediated cytoprotection, phosphorylation of AMP-activated protein kinase (AMPK), a key regulator in determining cell survival or death, was increased by ACE. Moreover, ACE treatment enhanced inactive phosphorylation of glycogen synthase kinase-$3{\beta}$ ($GSK3{\beta}$), downstream substrate kinase of AMPK. More importantly, ACE prevented a decrease in the $GSK3{\beta}$ phosphorylation derived by AA+iron, which might contribute to mitohondiral protection and cell survival. To further identify essential compounds in Akebiae Caulis for the protection of AA+iron-mediated cytotoxicity, we found that betulin in combination with hederagenin protected from AA+iron-induced mitochondrial dysfunction. Betulin+hederagenin treatment also increased inactive phosphorylation of $GSK3{\beta}$ in common with ACE. These results suggest that ACE protected hepatocytes against oxidative stress and mitochondrial dysfunction, which is mediated with inactive $GSK3{\beta}$ phosphorylation downstream of AMPK.

Puerarin pretreatment attenuates cardiomyocyte apoptosis induced by coronary microembolization in rats by activating the PI3K/Akt/GSK-3β signaling pathway

  • Chen, Zhi-Qing;Zhou, You;Huang, Jun-Wen;Chen, Feng;Zheng, Jing;Li, Hao-Liang;Li, Tao;Li, Lang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제25권2호
    • /
    • pp.147-157
    • /
    • 2021
  • Coronary microembolization (CME) is associated with cardiomyocyte apoptosis and cardiac dysfunction. Puerarin confers protection against multiple cardiovascular diseases, but its effects and specific mechanisms on CME are not fully known. Hence, our study investigated whether puerarin pretreatment could alleviate cardiomyocyte apoptosis and improve cardiac function following CME. The molecular mechanism associated was also explored. A total of 48 Sprague-Dawley rats were randomly divided into CME, CME + Puerarin (CME + Pue), sham, and sham + Puerarin (sham + Pue) groups (with 12 rats per group). A CME model was established in CME and CME + Pue groups by injecting 42 ㎛ microspheres into the left ventricle of rats. Rats in the CME + Pue and sham + Pue groups were intraperitoneally injected with puerarin at 120 mg/kg daily for 7 days before operation. Cardiac function, myocardial histopathology, and cardiomyocyte apoptosis index were determined via cardiac ultrasound, hematoxylin-eosin (H&E) and hematoxylin-basic fuchsin-picric acid (HBFP) stainings, and TdT-mediated dUTP nick-end labeling (TUNEL) staining, respectively. Western blotting was used to measure protein expression related to the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/glycogen synthase kinase-3β (GSK-3β) pathway. We found that, puerarin significantly ameliorated cardiac dysfunction after CME, attenuated myocardial infarct size, and reduced myocardial apoptotic index. Besides, puerarin inhibited cardiomyocyte apoptosis, as revealed by decreased Bax and cleaved caspase-3, and up-regulated Bcl-2 and PI3K/Akt/GSK-3β pathway related proteins. Collectively, puerarin can inhibit cardiomyocyte apoptosis and thus attenuate myocardial injury caused by CME. Mechanistically, these effects may be achieved through activation of the PI3K/Akt/GSK-3β pathway.

Urtica Dioica and Lamium Album Decrease Glycogen Synthase Kinase-3 beta and Increase K-Ras in Diabetic Rats

  • Abedinzade, Mahmood;Rostampour, Mohammad;Mirzajani, Ebrahim;Khalesi, Zahra Bostani;Pourmirzaee, Tahere;Khanaki, Korosh
    • 대한약침학회지
    • /
    • 제22권4호
    • /
    • pp.248-252
    • /
    • 2019
  • Objectives: The aim of the present work is evaluating the special effects of Urtica Dioica and Lamium Album on the serum level of K-Ras and GSK-3 beta in diabetic rats. Methods: In the present experimental study, 32 male Wistar rats randomly divided into 4 groups (Group I: normal control rats; receiving daily PBS, Group 2: diabetic control rats; receiving single dose of streptozotocin (60 mg/kg) and daily PBS, Group 3: Diabetic rats treated with 100 mg/kg of hydroalcoholic extract of the U. dioica, Group 4: Diabetic rats treated with 100 mg/kg of hydroalcoholic extract of L. Album. Diabetes-induced by an intraperitoneal injection of streptozotocin (60 mg/ kg). On the 14 th day of treatment, the weight, fasting blood sugar (FBS) and on 28 th day blood glucose, K-Ras and GSK3 beta was measured. Results: In diabetic group blood GSK- 3 beta increase in comparison to control group (P < 0.05), also blood K-Ras decrease in the diabetic group (P < 0.05). Both extracts reduced GSK-3 beta level, however, this reduction was only statistically significant by U.dioica (P < 0.05). Compared to diabetic group, blood K-Ras level increased by both extract (P < 0.05). Also diabetes induction increase blood glucose levels and both extracts decrease its level significantly (P < 0.05).there is no significant differences among both extract effects on blood glucose, and K-Ras. Conclusion: For the first time shown that both extracts by regulating GSK-3 beta and K-Ras improve blood glucose level. More studies are needed to determine all the effects of these herbs.

Synthesis and Biological Evaluation of Novel GSK-3β Inhibitors as Anticancer Agents

  • Choi, Min-Jeong;Oh, Da-Won;Jang, Jae-Wan;Cho, Yong-Seo;Seo, Seon-Hee;Jeong, Kyu-Sung;Ko, Soo-Young;Pae, Ae-Nim
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권6호
    • /
    • pp.2015-2020
    • /
    • 2011
  • A series of isoxazol-indolin-2-one was designed for GSK-3${\beta}$ inhibitors as novel anticancer agents based on their binding mode analysis in GSK-3${\beta}$ crystal structure. Total 21 compounds were synthesized and evaluated for their inhibitory activity against two tumor cell lines (DU145 and HT29). Most of the synthesized compounds were potent with above 80% inhibitory activity at 100 ${\mu}M$, and several compounds were examined for inhibitory activity against GSK-3${\beta}$. Among them, 15(Z) ($R_1$=H, $R_2$=3-Cl-phenyl) was most active with 78% inhibition of tumor cell line (HT29) at 20 ${\mu}M$ and 72% inhibition of GSK-3${\beta}$ at 20 ${\mu}M$.

Insulin-like growth factor-1 improves diabetic cardiomyopathy through antioxidative and anti-inflammatory processes along with modulation of Akt/GSK-3β signaling in rats

  • Wang, Cheng Yu;Li, Xiang Dan;Hao, Zhi Hong;Xu, Dongyuan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제20권6호
    • /
    • pp.613-619
    • /
    • 2016
  • Diabetic cardiomyopathy (DCM), a serious complication of diabetes mellitus, is associated with changes in myocardial structure and function. This study sought to explore the ability of insulin-like growth factor-1 (IGF-1) to modulate DCM and its related mechanisms. Twenty-four male Wistar rats were injected with streptozotocin (STZ, 60 mg/kg) to mimic diabetes mellitus. Myocardial fibrosis and apoptosis were evaluated by histopathologic analyses, and relevant proteins were analyzed by Western blotting. Inflammatory factors were assessed by ELISA. Markers of oxidative stress were tested by colorimetric analysis. Rats with DCM displayed decreased body weight, metabolic abnormalities, elevated apoptosis (as assessed by the bcl-2/bax ratio and TUNEL assays), increased fibrosis, increased markers of oxidative stress (MDA and SOD) and inflammatory factors (TNF-${\alpha}$ and IL-$1{\beta}$), and decreased phosphorylation of Akt and glycogen synthase kinase (GSK-$3{\beta}$). IGF-1 treatment, however, attenuated the metabolic abnormalities and myocardial apoptosis, interstitial fibrosis, oxidative stress and inflammation seen in diabetic rats, while also increasing the phosphorylation levels of Akt and GSK-$3{\beta}$. These findings suggest that IGF-1 ameliorates the pathophysiological progress of DCM along with an activation of the Akt/GSK-$3{\beta}$ signaling pathway. Our findings suggest that IGF-1 could be a potential therapeutic choice for controlling DCM.

Solution Structure of a GSK 3$\beta$ Binding Motif, A $AXIN^{pep}$

  • Kim, Yong-Chul;Jung, JIn-Won;Park, Hee-Yong;Kim, Hyun-Yi;Lee, Weon-tae
    • 한국자기공명학회논문지
    • /
    • 제9권1호
    • /
    • pp.38-47
    • /
    • 2005
  • Axin is a scaffold protein of the APC/axin/GSK complex, binding to all of the other signalling components. Axin interacts with Glycogen synthase kinase 3$\beta$ (GSK 3$\beta$) and functions as a negative regulator of Wnt signalling pathways. To determine the solution structure of the GSK3$\beta$ binding regions of the axin, we initiated NMR study of axin fragment comprising residues 3$Val^{388} - Arg^{401}$using circular dichroism (CD) and two-dimensional NMR spectroscopy. The CD spectra of 3$axin^{pep}$ in the presence of 30% TFE displayed a standard 3$\alpha$-helical conformation, exhibiting the bound structure of 3$axin^{pep}$ to GSK3$\bata$. On the basis of experimental restraints including $NOE_s$, and $^3J_{HN\alpha} $ coupling constants, the solution conformation of $axin^{pep}$ was determined with program CNS. The 20 lowest energy structures were selected out of 50 final simulated-annealing structures in both water and TFE environment, respectively. The $RMSD_s$ for the 20 structures in TFE solution were 0.086 nm for backbone atoms and 0.195 nm for all heavy atoms, respectively. The Ramachandran plot indicates that the $\varphi$, $\psi$ angles of the 20 final structures is properly distributed in energetically acceptable regions. $Axin^pep$ in aqueous solutions consists of a stable $\alpha$-helix spanning residues form $Glu^{391}$ to $Val^{391} $, which is an interacting motif with GSK3$\beta$.

  • PDF

Tumor necrosis factor-inducible gene 6 interacts with CD44, which is involved in fate-change of hepatic stellate cells

  • Wang, Sihyung;Kim, Jieun;Lee, Chanbin;Jung, Youngmi
    • BMB Reports
    • /
    • 제53권8호
    • /
    • pp.425-430
    • /
    • 2020
  • Tumor necrosis factor-inducible gene 6 protein (TSG-6) is a cytokine secreted by mesenchymal stem cells (MSCs) and regulates MSC stemness. We previously reported that TSG-6 changes primary human hepatic stellate cells (pHSCs) into stem-like cells by activating yes-associated protein-1 (YAP-1). However, the molecular mechanism behind the reprogramming action of TSG-6 in pHSCs remains unknown. Cluster of differentiation 44 (CD44) is a transmembrane protein that has multiple functions depending on the ligand it is binding, and it is involved in various signaling pathways, including the Wnt/β-catenin pathway. Given that β-catenin influences stemness and acts downstream of CD44, we hypothesized that TSG-6 interacts with the CD44 receptor and stimulates β-catenin to activate YAP-1 during TSG-6-mediated transdifferentiation of HSCs. Immunoprecipitation assays showed the interaction of TSG-6 with CD44, and immunofluorescence staining analyses revealed the colocalization of TSG-6 and CD44 at the plasma membrane of TSG-6-treated pHSCs. In addition, TSG-6 treatment upregulated the inactive form of phosphorylated glycogen synthase kinase (GSK)-3β, which is a negative regulator of β-catenin, and promoted nuclear accumulation of active/nonphosphorylated β-catenin, eventually leading to the activation of YAP-1. However, CD44 suppression in pHSCs following CD44 siRNA treatment blocked the activation of β-catenin and YAP-1, which inhibited the transition of TSG-6-treated HSCs into stem-like cells. Therefore, these findings demonstrate that TSG-6 interacts with CD44 and activates β-catenin and YAP-1 during the conversion of TSG-6-treated pHSCs into stem-like cells, suggesting that this novel pathway is an effective therapeutic target for controlling liver disease.

Insulin Induces Transcription of VEGF in Arnt-dependent but HIF-l$\alpha$-Independent Pathway

  • Park, Youngyeon;Park, Hyuns-Sung
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2001년도 추계학술대회 및 정기총회
    • /
    • pp.100-100
    • /
    • 2001
  • Hypoxia is a pathophysiological condition that occurs during injury, ischemia, and stroke. Hypoxic stress induces the expression of genes associated with increased energy flux, including the glucose transporters Glutl and Glut3, several glycolytic enzymes, nitric oxide synthase, erythropoietin and vascular endothelial growth factor. Induction of these genes is mediated by a common basic helix-loop-helix PAS transcription complex, the hypoxia-inducible factor-l${\alpha}$ (HIF-1${\alpha}$)/ aryl hydrocarbon receptor nuclear translocator (ARNT). Insulin plays a central role in regulating metabolic pathways associated with energy storage and utilization. It triggers the conversion of glucose into glycogen and triglycerides and inhibits gluconeogenesis. Insulin also induced hypoxia-induced genes. However the underlying mechanism is unestablished. Here, we study the possibility that transcription factor HIF-1${\alpha}$ is involved in insulin-induced gene expression. We investigate the mechanism that regulates hypoxia-inducible gene expression In response to insulin We demonstrate that insulin increases the transcription of hypoxia- inducible gene. Insulin-induced transcription is not detected in Arnt defective cell lines. Under hypoxic condition, HIF- l${\alpha}$ stabilizes but does not under insulin treatment. Insulin-induced gene expression is inhibited by presence of PI-3 kinase inhibitor and Akt dominant negative mutant, whereas hypoxia-induced gene expression is not. ROS inhibitor differently affects insulin-induced gene expressions and hypoxia-induced gene expressions. Our results demonstrate that insulin also regulates hypoxia-inducible gene expression and this process is dependent on Arnt. However we suggest HIF-l${\alpha}$ is not involved insulin-induced gene expression and insulin- and hypoxia- induces same target genes via different signaling pathway.

  • PDF

Wnt signaling이 neural crest lineage segregation과 specification에 미치는 영향 (The Effects of Wnt Signaling on Neural Crest Lineage Segregation and Specification)

  • 송진수;진은정
    • 생명과학회지
    • /
    • 제19권10호
    • /
    • pp.1346-1351
    • /
    • 2009
  • Neural crest는 신경계의 발생과정에서 생긴 특정화된 외배엽으로서 말초신경계(peripheral nervous system)의 모든 sensory cells과 peripheral cells, unipolar spinal ganglion cell, cranial sensory ganglia, peripheral nerve의 neurolemmal sheath cells, ganglia의 capsule cells, sympathetic ganglia, chromaffin cells, pigment cell 등의 자율신 경계의 대부분의 세포로 분화 한다. 최근pluripotetic neural crest cells의 운명이 이미 제한되어 있으며, 이러한 fate-restricted crest cells이 neural tube에서 emigration된다고 보고된바 있다. 또한 본 연구자는 Wnt와 Wnt의 antagonist가 neural crest cell의 specification이 일어나는 시기에 발현하여, neural crest cell의 segregation과 differentiation에 직접적으로 관여함을 밝혔다. 이를 보다 명확히 규명하기 위해, 본 연구에서는 neural tube에 Wnt-3a expressing cell의 grafting 혹은 dominant negative GSK construct의 electroporation을 통해 Wnt signaling을 modulation 하여 downstream mediator를 조사하였다. Wnt signaling의 stimulation은 neural crest cell의 melanoblast 로의 commitment를 유도하였으며, 이와 더불어 cadherin 7과 slug의 발현을 조절함을 확인하였다.

Down-regulation of EZH2 by RNA Interference Inhibits Proliferation and Invasion of ACHN Cells via the Wnt/β-catenin Pathway

  • Yuan, Jun-Bin;Yang, Luo-Yan;Tang, Zheng-Yan;Zu, Xiong-Bing;Qi, Lin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권12호
    • /
    • pp.6197-6201
    • /
    • 2012
  • Although enhancer of zeste homolog 2 (EZH2) has been reported as an independent prognostic factor in renal cell carcinoma (RCC), little is known about the exact mechanism of EZH2 in promoting the genesis of RCC. However, several studies have shown that dysregulation of the Wnt/${\beta}$-catenin signaling pathway plays a crucial role. Therefore, we determined whether EZH2 could affect ACHN human RCC cell proliferation and invasion via the Wnt/${\beta}$-catenin pathway. In the present study, we investigated the effects of short interfering RNA (siRNA)-mediated EZH2 gene silencing on Wnt/${\beta}$-catenin signaling in ACHN cells. EZH2-siRNA markedly inhibited the proliferation and invasion capabilities of ACHN, while also reducing the expression of EZH2, Wnt3a and ${\beta}$-catenin. In contrast, cellular expression of GSK-$3{\beta}$ (glycogen synthase kinase-$3{\beta}$), an inhibitor of the Wnt/${\beta}$-catenin pathway, was conspicuously higher after transfection of EZH2 siRNA. These preliminary findings suggest EZH2 may promote proliferation and invasion of ACHN cells via action on the Wnt/${\beta}$-catenin signaling pathway.