• Title/Summary/Keyword: Glycine max L. Merr.

Search Result 173, Processing Time 0.024 seconds

Influence of Plant Growth Substances on Cytolysome-like Organelles in the Mesophyll Cells of Soybean (식물생장소가 대두 엽육세포의 Cytolysome-like Organelle에 미치는 영향)

  • 김우갑
    • Journal of Plant Biology
    • /
    • v.17 no.4
    • /
    • pp.163-170
    • /
    • 1974
  • Leaf tissue of Glycine max Merr. was fixed in para-formaldehyde-glutarldehyde and postfixed in osmium tetroxide or postassium permanganate for electron microscopy. The origin of cytolysome-like organelles of mesophyll cell was studied and changes of fine structure of the organelles according to treating solutions such as gibberellin (GA), kinethin (KI), 2,4-dichlorophenoxy acetic acid(2, 4-D) or 2, 4-D+GA(1mg/l, respectively) were observed. The cylolysome-like organelles differentiate in endoplasmic reticulum and plasmalemma, and they drop into vacuoles being isolated from the formers. They seem to change into myelin-like structure and to be degenerated by autodigestion. Cytolysome-like organelles involved in cell walls and vacuoles showed activity of acid phosphatase. In the group of GA and KI treatment, cytolysome-like organelles were similar to that of the control group. But in the treatmental groups of 2,4-D and 2,4-D+GA, myelin-like structures increased in size and autodigestion of this organelles were similar to that of the control group. But in the treatmental groups of 2,4-D and 2,4-D+GA, myelin-like structures increased in size and autodigestion of this organelle seemed to be accelerated. In the treatmental group of 2,4-D+GA, myelin-like structures shown high electron density were observed in cytoplasm and vacuoles together.

  • PDF

Genotype Fingerprinting, Differentiation and Association between Morphological Traits and SSR Loci of Soybean Landraces

  • Park, lk-Young
    • Plant Resources
    • /
    • v.1 no.2
    • /
    • pp.81-91
    • /
    • 1998
  • Fifty-nine Korean soybean (Glycine max L. Merr.) landrace accessions were tested for genotype fingerprinting, differentiation and association between morphological traits and SSR profile. Using 8 SSR loci, 59 varieties were divided into 55 groups, and only 4 pairs of varieties were not uniquely identified. The resolving power of SSR for soybean genotyping was much higher than that of the morphological traits that were studied. Identification efficiency also differed among SSR loci. Those loci with higher numbers of alleles distinguished varieties more effectively. Genetic differentiation values of the soybean landraces varied from 0.57 to 0.82 with a mean of 0.68. The number of alleles detected by the 8 loci ranged from 3 to 8. and the effective number of alleles ranged from 2.3 to 5.1. In a study of the association of SSR alleles with morphological traits, some alleles seemed to be related with some specific morphological traits. Comparison of two kinds of dendrograms which were derived from SSR markers and quantitative traits indicated that the dendrograms were not consistent. Considering the correlation between single SSR locus and qualitative traits governed by major genes, the data suggest that alleles of microsatellite loci be more closely related to some traits determined by major genes than those determined by minor genes.

  • PDF

A Simple and Rapid Method to Isolate Low Molecular Weight Proteinase Inhibitors from Soybean

  • Krishnan Bari B.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.4
    • /
    • pp.342-348
    • /
    • 2004
  • Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the $60\%$ isopropanol extract of soybean(Glycine max [L.] Merr.) seed revealed two abundant proteins with molecular masses of 19 and 10 kDa. Amino acid analysis revealed that the isopropanol-extractable protein fraction was rich in cysteine. Two-dimensional gel electro-phoretic analysis indicated that the 19kDa and 10kDa proteins had pI of 4.2 and 4.0 respectively. Peptide mass fingerprints of trypsin digests of the two proteins obtained using matrix-assisted, laser desorption/ionization-time of flight (MALDI-TOF) mass spectroscopy revealed the 19kDa protein was Kunitz trypsin inhibitor and the 10kDa protein was Bowman-Birk proteinase inhibitor. When resolved under non-denaturing conditions, the isopropanol-extracted proteins inhibited trypsin and chymotrypsin activity. Results presented in this study demonstrate that isopropanol extraction of soybean seed could be used as a simple and rapid method to obtain a protein fraction enriched in Kunitz trypsin and Bowman-Birk proteinase inhibitors. Since proteinase inhibitors are rich in sulfur amino acids and are putative anticarcinogens, this rapid and inexpensive isolation procedure could facilitate efforts in nutrition and cancer research.

Response of Leaf Water Potential and Growth Characteristics to Irrigation Treatment in Soybean

  • Lee, Jeong-Hwa;Seong, Rak-Chun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.2
    • /
    • pp.81-88
    • /
    • 2003
  • Soybeans [Glycine max (L.) Merr.] are frequently exposed to unfavorable environments during growing seasons and water is the most important factor limiting for the production system. The purpose of this study was to determine the leaf water potential changes by irrigation, and to evaluate the relationships of leaf water potential, growth and yield in soybeans. Three soybean cultivars, Hwangkeumkong, Shinpaldalkong 2, and Pungsannamulkong, were planted in growth chamber and field with irrigated treatments. Leaf water potential of three soybean cultivars was positively correlated with leaf water content during vegetative and reproductive growth stages in growth chamber and field experiments. Leaf water potentials measured for three soybean cultivars under growth chamber were higher than those of under field conditions. Higher leaf water potential with irrigated plots under field was observed compared to conventional plots during reproductive growth stages. Leaf water potentials of three soybean cultivars were continually decreased during reproductive growth stages under field and there was no significant difference among them. Number of leaves, leaf water content, pod dry weight, number of seeds and seed dry weight with irrigated plots were higher than those of conventional plots. The results of this study suggested that leaf water potential could be used as an important growth indicator during the growing season of soybean plants.

Effects of Water Deficit on Leaf Growth during Vegetative Growth Period in Soybean

  • Kim, Wook-Han;Hong, Byung-Hee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.45 no.1
    • /
    • pp.1-5
    • /
    • 2000
  • Leaf area is critical for crop light interception, and thereby has a substantial influence on crop yield. This experiment was conducted to characterize the development of soybean [Glycine max (L.) Merr.] leaf area. Plastochron index and leaf relative growth rate of Jackson was contrasted with the PI416937, which also has demonstrated tolerance to drought. First, plastochron ratio (PR) and plastochron index (PI) were evaluated in greenhouse to compare the leaf growth rate between two genotypes under well-watered condition. There was reasonable constancy of PR between two genotypes. The PR means of Jackson and PI416937 were 0.41 and 0.44, respectively. A fairly smooth increase of PI during vegetative stage was observed. Second, the relative growth rates were graphed against leaf area, normalized with respect to final leaf area, under well-watered and water-deficit conditions. Leaf growth was sustained longer in well-watered condition than water-deficit condition and there was a sizable proportion of leaves which was ceased earlier their growth in water-deficit condition compared to well-watered condition. The leaf relative growth rate of Jackson until leaves had completed at 45% of their growth during water deficit period was higher than that of PI416937.

  • PDF

Effects of Water Deficit on Biomass Accumulation and Water Use Efficiency in Soybean during Vegetative Growth Period

  • Kim, Wook-Han;Hong, Byung-Hee;Larry C. Purcell
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.45 no.1
    • /
    • pp.6-13
    • /
    • 2000
  • Water deficit is the primary constraint of soybean [Glycine max (L.) Merr.] yield, and a physiological understanding of processes affected by water deficit is a key step in identifying and improving drought tolerance in soybean. The objectives of this research were to evaluate biomass and nitrogen accumulation patterns and water use efficiency (WUE) as possible mechanisms associated with the drought tolerance of Jackson. Biomass accumulation of Jackson was contrasted with the PI416937, which also has demonstrated tolerance to drought. For water-deficit treatment, total biomass accumulation was negligible for PI416937, but biomass accumulation continued at approximately 64 % of the well-watered treatment of Jackson. Transpirational losses for Jackson and PI416937 were approximately the same for the water-deficit treatment, indicating that Jackson had superior WUE. Isotopic discrimination of $^{13}$ C relative to $^{12}$ C also indicated that Jackson had higher WUE. Results indicated that increased WUE for Jackson under water deficit showed it was tolerant to drought rather than had an avoidance mechanism.

  • PDF

Variation of Anthocyanins and Isoflavones between Yellow-Cotyledon and Green-Cotyledon Seeds of Black Soybean

  • Kim, Sun-Lim;Kim, Hyun-Bok;Chi, Hee-Youn;Park, Nam-Kyu;Son, Jong-Rok;Yun, Hong-Tae;Kim, Si-Ju
    • Food Science and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.778-782
    • /
    • 2005
  • Analysis of black soybeans [Glycine max (L.) Merr.; 59 Korean varieties] revealed that 100-seed weights of green cotyledon seeds (33.5 g, n=31) were higher than those of yellow ones (28.9 g, n=28). Contents of delphinidin-3-glucoside (D3G), cyanidin-3-glucoside (C3G), petunidin-3-glucoside (P3G), and total anthocyanins in seed coats of black soybeans were 0.03-4.15, 0.74-18.36, 0.02-1.60, and 0.87-23.52 mg/g, respectively, among which most prominent anthocyanin was C3G (80.9% of total content), followed by D3G (13.6%) and P3G (5.5%). No significant differences were observed in color parameters $a^*$ and $b^*$ between black soybeans with yellow cotyledon (BYC) and green cotyledon (BGC). Total isoflavone content of BGC was higher than that of BYC, and negative correlation was found between total anthocyanin and isoflavone contents.

A Simple Method of Seedling Screening for Drought Tolerance in Soybean

  • Kim, Young-Jin;S. Shanmungasundaram;Yun, Song-Joong;Park, Ho-Ki;Park, Moon-Soo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.4
    • /
    • pp.284-288
    • /
    • 2001
  • Water deficit is a serious constraint to soybean [Glycine max L. (Merr.)] production in rainfed regions of Asia, Africa, and America. This study was conducted to develop a simple and effective screening method for drought tolerance in soybean. Fifteen soybean cultivars, eight identified to be drought-tolerant and seven drought-sensitive in previous studies, were used for the evaluation of drought tolerance under the new screening conditions. The seedling screening method was consisted of a treatment in a PEG solution and drought treatment in parafilm-layered pots. 5-day-old seedlings were treated in a 18% PEG solution for 4 days and their wilting and hypocotyl browning were recorded. Three seedlings grown in a parafilm-layered pot containing peat moss were drought-stressed by withholding water from the third day after seedling emergence, and root and seedling growth were examined. Degree of drought tolerance were rated based on seedling vigor in the PEG solution and drought-stressed parafilm-layered pots, and also on the penetration ability of roots through parafilm layer. Most of seedlings of the drought-tolerant cultivars showed higher vigour and root penetration than those of the drought-sensitive cultivars under the new screening conditions. Our results indicate that the new method can be used as a simple and effective screening procedure for drought tolerance in soybean breeding programs.

  • PDF

Introduction, Development, and Characterization of Supernodulating Soybean Mutant -Shoot Factor Regulation of Nodule Development in Supernodulating Soybean Mutant-

  • Lee, Hong-Suk;Kim, Yong-Wook;Park, Eui-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.43 no.1
    • /
    • pp.28-31
    • /
    • 1998
  • Nodule development was regulated partially by host plant factors originating in the shoots and roots. This study was performed to identify the origin of the factors regulating nodulation in supernodulating soybean (Glycine max [L.] Merr.) mutant 'SS2-2' which was isolated recently from ethyl methanesulfonate (EMS) mutagenesis of 'Sinpaldalkong 2'. Self- and reciprocal-grafts were made among three soybean genotypes which consisted of two supernodulating mutants, SS2-2 and 'nts 382', and a normal nodulating Sinpaldalkong 2. Self-grafted supernodulating mutants were characterized by greater nodule number, nodule dry weight, and $C_2$H$_2$ reduction activity than self-grafted wild types. They were also characterized by relatively higher nodule to root dry weight. Significant shoot genotypic effects were observed on nodule number, nodule dry weight, and $C_2\;H_2$ reduction activity per plant, whereas varying root genotypes had no effects. From this result, it is surmised that supernodulating characters are controlled by a graft-transmissible shoot factor, and mutant SS2-2 may have similar nodulation mechanism to the former supernodulating nts 382. In all grafts, both supernodulating mutants and Sinpaldalkong 2 maintained the similar balance between above ground and below ground parts regardless of significant differences in partitioning of dry matter into root and nodule between supernodulating mutants and Sinpaldalkong 2.

  • PDF

Gene Duplications Revealed during the Process of SNP Discovery in Soybean[Glycine max(L.) Merr.]

  • Cai, Chun Mei;Van, Kyu-Jung;Lee, Suk-Ha
    • Journal of Crop Science and Biotechnology
    • /
    • v.10 no.4
    • /
    • pp.237-242
    • /
    • 2007
  • Genome duplication(i.e. polyploidy) is a common phenomenon in the evolution of plants. The objective of this study was to achieve a comprehensive understanding of genome duplication for SNP discovery by Thymine/Adenine(TA) cloning for confirmation. Primer pairs were designed from 793 EST contigs expressed in the roots of a supernodulating soybean mutant and screened between 'Pureunkong' and 'Jinpumkong 2' by direct sequencing. Almost 27% of the primer sets were failed to obtain sequence data due to multiple bands on agarose gel or poor quality sequence data from a single band. TA cloning was able to identify duplicate genes and the paralogous sequences were coincident with the nonspecific peaks in direct sequencing. Our study confirmed that heterogeneous products by the co-amplification of a gene family member were the main cause of obtaining multiple bands or poor quality sequence data in direct sequencing. Counts of amplified bands on agarose gel and peaks of sequencing trace suggested that almost 27% of nonrepetitive soybean sequences were present in as many as four copies with an average of 2.33 duplications per segment. Copy numbers would be underestimated because of the presence of long intron between primer binding sites or mutation on priming site. Also, the copy numbers were not accurately estimated due to deletion or tandem duplication in the entire soybean genome.

  • PDF