• Title/Summary/Keyword: Glycine max L. Merr.

Search Result 173, Processing Time 0.029 seconds

The development of new soybean strain with ti and cgy1 recessive allele

  • Choi, Sang Woo;Park, Jun Hyun;Chung, Jong Il
    • Journal of Plant Biotechnology
    • /
    • v.45 no.4
    • /
    • pp.328-332
    • /
    • 2018
  • Soybean [Glycine max (L.) Merr.] seed is an important dietary source of protein, oil, carbohydrate, isoflavone and other various nutrients for humans and animals. However, there are anti-nutritional factors in the raw mature soybeans. Kunitz trypsin inhibitor (KTI) protein and stachyose are the main anti-nutritional factors in soybean seed. The ${\alpha}^{\prime}$-subunit of ${\beta}$-conglycinin protein exhibit poor nutritional and food processing properties. The genetic removal of the KTI and ${\alpha}^{\prime}$-subunit proteins will improve the nutritional value of the soybean seed. The objective of this research was to develop a new soybean strain with KTI and ${\alpha}^{\prime}$-subunit protein free ($titicgy_1cgy_1$ genotype) and proper agronomic traits. A breeding population was developed from the cross of the Bl-1 and 15G1 parents. A total of 168 $F_2$ seeds from the cross of the BL-1 and 15G1 parents were obtained. The segregation ratios of 9: 3: 3: 1 ($104Ti\_Cgy_{1\_}:\;30Ti\_cgy_1cgy_1:\;21cgy_1cgy_1Ti\_:\;13titicgy_1cgy_1$) between the Ti and $Cgy_1$ genes in the $F_2$ seeds were observed (${\chi}^2=5.12$, P=0.5-0.10). Two $F_4$ plant strains with proper agronomical traits and $titicgy_1cgy_1$ genotype (free of both KTI and ${\alpha}^{\prime}$-subunit protein) were selected and harvested. 2 strains (S1 and S2) had yellow seed coats and hilum. The plant height of the S1 strain was 65 centimeters. The 100-seed weight was 29.2 g. The plant height of the S2 strain was 66 centimeters and 100-seed weight was 26.2 g. The two strains selected in this research will be used to improve the new cultivar that will be free of the KTI and ${\alpha}^{\prime}$-subunit proteins.

The Relationship Between Green Stem Disorder and the Accumulation of Vegetative Storage Protein in Soybean

  • Zhang, Jiuning;Katsube-Tanaka, Tomoyuki;Shiraiwa, Tatsuhiko
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2019.09a
    • /
    • pp.22-22
    • /
    • 2019
  • Green stem disorder (GSD) of soybean (Glycine max (L.) Merr.) is characterized by delayed senescence of stems with normal pod ripening and seed maturation (Hobbs, 2006). GSD complicates harvesting of soybeans by significantly increasing the difficulty in cutting the affected plants. There is also the potential for moisture in the stems to be scattered on the seed, reducing the grade and storability of the seed. Not only the cause of GSD is yet unknown, but also GSD cannot be evaluated until maturity, therefore the method to evaluate GSD in early growth stage with high sensitivity is necessary. In previous studies, it has been reported that vegetative storage protein (VSP) accumulates and the syndrome of GSD appears in soybean after depod treatment (Fischer, 1999). Soybean VSP is a storage protein which is abundant in young sink leaves and degraded during seed fill (Wittenbach, 1982). Hence, we have established a system to quantify VSP of high sensitivity by using standard protein made by genetically transformed E. coli and specific antibody against VSP, and studied the relationship between VSP and GSD, by depod experiment and drought/excess wet experiments. The result of depod experiment with the cultivar 'Yukihomare' was the same with the previous studies, VSP accumulated much more than control and the syndrome of GSD appeared in soybean in depod treatment. Drought and excess wet had different impact on GSD. Excess wet caused GSD of the cultivar 'Tachinagaha (GSD susceptible)', while drought caused a little syndrome of GSD in the cultivar 'Touhoku 129 (GSD resistant)'. The accumulation of VSP differed between the two cultivars over time. In conclusion, the accumulation of VSP came along with the emergence of GSD. Different cultivars showed different response to drought and excess wet. In the future, it is expected that the dynamics of VSP will be elucidated in detail, leading to the development of early diagnosis technology for green stem disorder and the elucidation of mechanism of soybean GSD.

  • PDF

Effect of Sowing Dates on Agronomic Traits and Quality of Seed for Soybean [Glycine max (L.) Merr.] in Southern Area of Korea

  • Hye Rang Park;Sanjeev Kumar Dhungana;Beom Kyu Kang;Jeong Hyun Seo;Jun Hoi Kim;Su Vin Heo;Ji Yoon Lee;Won Young Han;Hong-Tai Yun;Choon Song Kim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.4
    • /
    • pp.313-326
    • /
    • 2023
  • Owing to adverse weather conditions, there is a heightened focus on actively researching the regulation of the sowing date in field crop cultivation. Soybean, a prominent field crop with extensive acreage and production, is a photophilic and thermophilic crop characterized by short-day photoperiodism. Identifying the optimal sowing time is crucial for mitigating the effects of severe weather conditions on soybean yield. Precise control over the timing of soybean sowing is the key to minimizing yield reduction due to unfavorable weather conditions. Temperature, photoperiod, and their interplay are the most significant factors influencing soybean cultivation among various weather factors. We conducted an experiment using three Korean soybean cultivars with varied maturities (Hwangkeumol: early maturing and Daewonkong and Pungsannamulkong: late maturing) in 2013 and 2014. Our investigation covered aspects of soybean growth, development, yield components, isoflavones, and visual seed quality. Across all three varieties, isoflavone levels increased with later sowing dates, while other measured components exhibited significant variations based on the sowing date. This study also provides valuable insights for the selection of suitable cultivars that perform well in soybean cultivation at various durations of maturity.

Establishing Optimal Conditions for LED-Based Speed Breeding System in Soybean [Glycine max (L.) Merr.] (LED 기반 콩[Glycine max (L.) Merr.] 세대단축 시스템 구축을 위한 조건 설정)

  • Gyu Tae Park;Ji-Hyun Bae;Ju Seok Lee;Soo-Kwon Park;Dool-Yi Kim;Jung-Kyung Moon;Mi-Suk Seo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.4
    • /
    • pp.304-312
    • /
    • 2023
  • Plant breeding is a time-consuming process, mainly due to the limited annual generational advancement. A speed breeding system, using LED light sources, has been applied to accelerate generational progression in various crops. However, detailed protocols applicable to soybeans are still insufficient. In this study, we report the optimized protocols for a speed breeding system comprising 12 soybean varieties with various maturity ecotypes. We investigated the effects of two light qualities (RGB ratio), three levels of light intensity (PPFD), and two soil conditions on the flowering time and development of soybeans. Our results showed that an increase in the red wavelength of the light spectrum led to a delay in flowering time. Furthermore, as light intensity increased, flowering time, average internode length, and plant height decreased, while the number of nodes, branches, and pods increased. When compared to agronomic soil, horticultural soil resulted in an increase of more than 50% in the number of nodes, branches, and pods. Consequently, the optimal conditions were determined as follows: a 10-hour short-day photoperiod, an equal RGB ratio (1:1:1), light intensity exceeding 1,300 PPFD, and the use of horticultural soil. Under these conditions, the average flowering time was found to be 27.3±2.48 days, with an average seed yield of 7.9±2.67. Thus, the speed breeding systems reduced the flowering time by more than 40 days, compared to the average flowering time of Korean soybean resources (approximately 70 days). By using a controlled growth chamber that is unaffected by external environmental conditions, up to 6 generations can be achieved per year. The use of LED illumination and streamlined facilities further contributes to cost savings. This study highlights the substantial potential of integrating modern crop breeding techniques, such as digital breeding and genetic editing, with generational shortening systems to accelerate crop improvement.

Effect of Phosphorus Stress on Photosynthesis and Nitrogen Fixation of Soybean Plant under $CO_2$ Enrichment (대기 $CO_2$ 상승시 인산공급이 식물체의 광합성 및 질소고정에 미치는 영향)

  • Sa, Tong-Min
    • Applied Biological Chemistry
    • /
    • v.40 no.2
    • /
    • pp.134-138
    • /
    • 1997
  • The objective of this study was to examine the effect of phosphorus deficiency on nitrogen fixation and photosynthesis of nitrogen fixing soybean plant under $CO_2$ enrichment condition. The soybean plants(Glycine max [L.] Merr.) inoculated with Bradyrhizobium japonicum MN 110 were grown with P-stressed(0.05 mM-P) and control(1 mM-P) treatment under control$(400\;{\mu}l/L\;CO_2)$ and enrichment$(800\;{\mu}l/L\;CO_2)$ enviromental condition in the phytotron equipped with high density lamp$(1000\;{\mu}Em^{-2}S^{-1})$ and $28/22^{\circ}C$ temperature cycle for 35 days after transplanting(DAT). At 35 DAT, phosphorus deficiency decreased total dry mass by 64% in $CO_2$ enrichment condition, and 51% in control $CO_2$ condition. Total leaf area was reduced significantly by phosphorus deficiency in control and enriched $CO_2$ condition but specific leaf weight was increased by P deficiency. Phosphorus deficiency significantly reduced photosynthetic rate(carbon exchange rate) and internal $CO_2$ concentration in leaf in both $CO_2$ treatments, but the degree of stress was more severe under $CO_2$ enrichment condition than under control $CO_2$ environmental condition. In phosphorus sufficient plants, $CO_2$ enrichment increased nodule fresh weight and total nitrogenase activity(acetylene reduction) of nodule by 30% and 41% respectively, but specific nitrogenase activity of nodule and nodule fresh weight was not affected by $CO_2$ enrichment in phosphorus deficient plant at 35 DAT. Total nitrogen concentrations in stem, root and nodule tissue were significantly higher in phosphorus sufficient plant grown under $CO_2$ enrichment, but nitrogen concentration in leaf was reduced by 30% under $CO_2$ enrichment. These results indicate that increasing $CO_2$ concentration does not affect plant growth under phosphorus deficient condition and phosphorus stress might inhibit carbohydrate utilization in whole plant and that $CO_2$ enrichment could not increase nodule formation and functioning under phosphorus deficient conditions and phosphorus has more important roles in nodule growth and functioning under $CO_2$ enrichment environments than under ambient condition.

  • PDF

Effects of Pre-cropping with Rice (Oryza sativa L.) Alternative Crops on Grain Yield and Flour Quality of Winter Wheat (Triticum aestivum L. 'Jokyung') on the Paddy Fields (논에서 벼 대체작물의 전작 재배가 조경밀의 곡물 생산성과 밀가루의 품질에 미치는 영향)

  • Oh, Seo Young;Seo, Jong Ho;Choi, Jisu;Oh, Seong Hwan
    • Korean Journal of Plant Resources
    • /
    • v.35 no.5
    • /
    • pp.686-695
    • /
    • 2022
  • The grain yield and flour quality of winter wheat (Triticum aestivum L. 'Jokyung') were investigated in the paddy fields in which the double-cropping of wheat linked to rice (Oryza sativa L.) and its alternative crops [black soybean (Glycine max (L.) Merr.), sesame (Sesamum indicum L.), and perilla (Perilla frutescens (L.) Britton)] was applied. In the soils in which black soybean, sesame, and perilla as pre-crops were cultivated, the soil pH was higher and the electrical conductivity was lower than in the rice pre-cropped soil. In addition, the available phosphate (Av. P2O5), and contents of Ca2+ and Mg2+ were higher than in the rice pre-cropped soil. Winter wheat growth characteristics such as culm length, spike length, number of spikes and grains were generally favorable in the black soybean pre-cropped soil. However, the grain yield of winter wheat increased in the black soybean, sesame, and perilla pre-cropped soils by 100 kg/10a or more than in the rice pre-cropped soil. Furthermore, protein content and SDS-sedimentation value of the flour were higher, while amylose content was slightly lower, in the black soybean, sesame, and perilla pre-cropped soils than in rice pre-cropped soil. These results suggest that cultivation of rice alternative crops such as sesame, black soybean, and perilla as pre-crops in paddy soil could improve the physical and chemical properties of the soil and contribute to producing high-quality wheat flour more advantageous for the baking process.

Efficient Transformation Method of Soybean Using Meristematic Tissues of Germinating Seeds (발아종자의 분열조직을 이용한 효율적인 콩 형질전환 방법)

  • Kim, Yul-Ho;Park, Hyang-Mi;Choi, Man-Soo;Sohn, Soo-In;Shin, Dong-Bum;Lee, Jang-Yong
    • Korean Journal of Breeding Science
    • /
    • v.40 no.3
    • /
    • pp.278-285
    • /
    • 2008
  • An efficient transformation method for soybean [Glycine max (L.) Merr.] using meristematic tissues of germinating seeds has been established. The embryonic axes were excised from germinating seeds of Korean soybean cultivar, Iksannamulkong and 0.5-2 cm long segment containing meristematic tissues were prepared by cutting hypocotyl region. The explants were inoculated with Agrobacterium tumefaciens strain LBA4404 harboring a binary vector with the bar gene as a selectable marker gene and a ${\beta}-glucuronidase$ (GUSINT) reporter gene, and then co-cultured for 7 days on co-cultivation medium (CCM). The meristematic tissues were cultured on shoot induction medium (SIMP6) supplemented with 0.4 mg/l $N_6-benzylaminopurine$ (BAP) and 0.1 mg/l indolebutyric acid (IBA) in the presence of 6 mg/l L-phosphinotricin (PPT) for 2 weeks and the surviving explants were transferred to shoot elongation medium (SEMP6). Transformation was confirmed by Southern blot analysis and the transformation efficiencies ranged from 1.48 to 2.07%. The new modified transformation method was successfully implemented for obtaining several transgenic lines with SMV-CP gene. It is expected that this method could efficiently be used for the transformation of recalcitrant soybean cultivars.

Analysis of Genetic Diversity in Soybean Varieties Using RAPD Markers (사료작물로 이용이 가능한 한국 재배콩의 RAPD 표지인자에 의한 유전적 다양성 분석)

  • Lee, Sung-Kyu;Kim, Bum-Jun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.18 no.4
    • /
    • pp.277-284
    • /
    • 1998
  • Random amplified polymorphic DNA (RAPD) analysis was used to detect the genetic diversity of soybean (Glycine max (L.) Merr.) varieties and field bean (Glycine soza Sieb. and Zucc.) Five soybean varieties and one field bean were analysed with random primers using the polymerase chain reaction (PCR). Nine primers of a total twenty random primer were selected to amplify DNA segments. A total of 74 PCR products were amplified and 67.6% of which were polymorphic. The size of DNA molecule is ranged 0.13~2.0Kb and typically generated four to eight major bands. Specific genetic marker were revealed in primer sequence 5'-CAG GCC CIT C-3', 5'-TGC TCT GCC C-3' and 5'-GTC CAC ACG G-3', respectively. Genetic similarity between each of the varieties were calculated from the pair-wise comparisons of amplification products and a dendrogram was constructed by an unweighted pair-group method with arithmethical means (UPGMA). The results indicate that intervarietal relationships of soybean have a narrow genetic base and between the varieties, Hwanggum-kong and Seckryang-bootkong is more closely related than the rest of varieties, and field bean is related quite distant.

  • PDF

Variation of Leaf Characters in Cultivating and Wild Soybean [Glycine max (L.) Merr.] Germplasm (콩 재배종과 야생종 유전자원의 엽 형질 변이)

  • Jong, Seung-Keun;Kim, Hong-Sig
    • Korean Journal of Breeding Science
    • /
    • v.41 no.1
    • /
    • pp.16-24
    • /
    • 2009
  • Although leaf characters are important in soybean [Glycin max (L.) Merr.] breeding and development of cultural methods, very little information has been reported. The objectives of this study were to evaluate and analyze the relationships among leaf characters and suggest possible classification criteria for cultivating and wild (Glycin soja Sieb. & Zucc.) soybeans. Total of 94 cultivating and 91 wild soybean accessions from the Soybean Germplasm Laboratory of Chungbuk National University were used for this study. Central leaflet of the second leaf from the top of the plant was selected to measure leaf characters. Average leaf length, leaf width, leaf area, leaf shape index (LSI) of cultivating and wild soybeans were 12.3$\pm$1.25 cm and 6.6$\pm$1.35 cm, 6.8$\pm$1.241 cm and 2.9$\pm$0.92 cm, 55.6$\pm$15.75 $cm^2$ and 14.3$\pm$7.83 $cm^2$, and 1.9$\pm$0.38 and 2.4$\pm$0.53, respectively. Based on LSI, three categories of leaf shape, i.e., oval, ovate and lanceolate, were defined as LIS$\leq$2.0, LSI 2.1~3.0 and 3.1$\leq$LSI, respectively. Percentage of oval, ovate and lanceolate leaf types among cultivating and wild soybean accessions were 78.7%, 17.0% and 4.3 %, and 40%, 15.4% and 4.4%, respectively. Based on leaf length, three categories for cultivating, i.e. short leaf ($\leq$11.0 cm), intermediate (11.1~13.0 cm), and long (13.1 cm$\leq$), and four categories, i.e. short ($\leq$5.0 cm), intermediate (5.1~7.0 cm), long (7.0~9.0 cm), and very long (9.1 cm$\leq$) for wild soybeans were defined. Short, intermediate and long leaf types were about 1/3, 1/2 and 1/6, respectively, in cultivating soybeans, and 15.4%, 40.7% and 39.5%, plus 4.4% of very long leaf type in wild soybean. Cultivating and wild soybeans had leaf thickness, leaf area ratio (LAR), angle and petiol length of 0.25$\pm$0.054 mm and 0.14$\pm$0.032 mm, 40.1$\pm$8.22 and 53.7$\pm$12.02, $37.6{\pm}5.89^{\circ}$ and $54.6{\pm}10.77^{\circ}$, and 23.9$\pm$5.89 cm and 5.9$\pm$2.33 cm, respectively. There were highly significant positive correlations between leaf length and leaf width, and negative correlation between LSI and leaf width both in cultivating and wild soybeans. Although leaf area showed significant correlations with leaf length, leaf width and LIS in cultivating soybeans, wild soybeans showed no significant relationships among these characters. In general, soybeans with oval, ovate and lanceolate leaves were significantly different in leaf width and thickness. Cultivating soybean with oval leaf had greater leaf area, while wild soybeans with oval or ovate leaf had longer petiol than with lanceolate leaf.

Simple Sequence Repeat Markers Linked to Quantitative Trait Loci Controlling Seed Weight, Protein and Oil Contents in Soybean (콩에서 종실의 무게와 oil 및 단백질 함량을 조절하는 양적 형질 유전자좌와 연관된 simple sequence repeat marker)

  • Kim, Hyeun-Kyeung;Kang, Sung-Taeg;Choung, Myoung-Gun;Jung, Chan-Sik;Oh, Ki-Won;Baek, In-Youl;Son, Beung-Gu
    • Journal of Life Science
    • /
    • v.16 no.6
    • /
    • pp.949-954
    • /
    • 2006
  • Soybean [Glycine max (L.) Merr.] is an important crop, accounting for 48% of the world market in oil crops. Improvement of the quality and quantity of soybean seed constituents is one of the most important objectives in soybean breeding. Protein content and seed size are important properties to determine the quality of tofu and soy sprouts respectively. The objective of this study was to identify quantitative trait loci (QTLs) that control seed weight, protein and oil content in soybean. The 117 $F_{2:10}$ recombinant inbred lines (RlL) developed from a cross of 'Keunolkong' and 'Shinpaldalkong' were used. Narrow-sense heritability estimates based on a plot mean on seed weight, protein and oil content were 0.8, 0.78 and 0.71, respectively. Four independent QTLs for seed weight were identified from linkage group (LG) F, I and K. Five QTL for protein content were located on LG D1b, E, H, I and L. Oil content was related with six QTLs located on LG D1b, E, G, I, J and N. Protein and oil content have three common QTLs on LG D1b, E and I. Thus, we identified major loci improving soybean seed quality.