• Title/Summary/Keyword: Glycine max (L.) Merr

Search Result 173, Processing Time 0.021 seconds

Leaf Photosynthesis as Influenced by Mesophyll Cell Volume and Surface Area in Chamber-Grown Soybean (Glycine max) Leaves (중엽세포의 체적 및 표면적과 콩잎의 광합성 능력간 관계)

  • Jin Il, Yun;S. Elwynn, Taylor
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.33 no.4
    • /
    • pp.353-359
    • /
    • 1988
  • Variations in photosynthetic capacities of leaves differing in thickness were explained on the basis of relationships between gas exchange and internal leaf structure. The relative importance of gas diffusion and of biochemical processes as limiting for leaf photosynthesis was also determined. Mesophyll cell surface was considered to be the limiting internal site for gas diffusion. and cell volume to be indicative of the sink capacity for CO$_2$ fixation. Increases in cell surface area were assumed to reduce proportionately mesophyll resistance to the liquid phase diffusion of CO$_2$. Increased cell volume was thought to account for a proportional increase in reaction rates for carboxylation, oxygenation. and dark respiration. This assumption was tested using chamber-grown Glycine max (L.) Merr. cv. Amsoy plants. Plants were grown under 200, 400, and 600 ${\mu}$mol photons m$\^$-2/ s$\^$-1/ of PAR to induce development of various leaf thickness. Photosynthetic CO$_2$ uptake rates were measured on the 3rd and 4th trifoliolate leaves under 1000 ${\mu}$mol photons m$\^$-2/ s$\^$-1/ of PAR and at the air temperature of 28 C. A pseudo -mechanistic photosynthesis model was modified to accommodate the concept of cell surface area as well as both cell volume and surface area. Both versions were used to simulate leaf photosynthesis. Computations based on volume and surface area showed slightly better agreement with experimental data than did those based on the surface area only. This implies that any single factor, whether it is photosynthetic model utilized in this study was suitable for relating leaf thickness to leaf productivity.

  • PDF

Investigation of Soybean Cyst Nematode Heterodera Glycines Type and Evaluation of Resistance on Soybean Varieties and Germplasms in Korea

  • Kim, Myung-Sik;Sung, Mi-Kyung;Kim, Min-Whan;Seo, Hyung-Jin;Kim, Dong-Geun;Chung, Jong-Il
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.58 no.2
    • /
    • pp.161-168
    • /
    • 2013
  • Soybean cyst nematode (Heterodera glycines Ichinohe) is one of the serious soybean [Glycine max (L.) Merr.] pests in major soybean producing countries. The objective of this study was to investigate of Heterodera glycines type using the five SCN infested soybean field soils and was to evaluate resistance to the soybean cyst nematode HG 2.5.7 type on soybean varieties and germplasms. The five SCN contaminated soil samples were collected from the three provinces on November 2011 in Korea, and eggs were cultured on early spring season in 2012. For the second study, a total fifty nine soybean varieties and germplasms were tested by infestation of HG type 2.5.7 in the greenhouse. Soybean cyst nematode HG types were investigated from five locations, HG 2 (race 1) type at Donghae, HG 2.5 (race 1) type at Jeongseon and Hapcheon, HG type 2.5.7 (race 1 or 5) at Yeongwol, and HG 1.2.7 (race 5) type at Haenam locations in present study. No Korean soybean varieties and germplasms were observed with SCN resistant trait to the HG type 2.5.7. Average SCN female index were calculated with 82.7% in 59 plant materials. Our results could be provided useful information to develop a SCN resistant cultivar in Korea.

Evaluation of Resistance to the Aphid (Aphis glycines Matsumura) in Soybean Cultivars and Germplasms

  • Kim, Myung Sik;Sung, Mi Kyung;Baek, Woon Jang;Kim, Min Hwan;Chung, Jong Il
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.57 no.4
    • /
    • pp.365-372
    • /
    • 2012
  • Native of soybean aphid (Aphis glycines Matsumura) is an Asia and aphid is one of the dangerous pests in soybean [Glycine max (L.) Merr.]. High density aphid populations can reduce crop production by causing severe damage. The objective of this study was evaluation of resistance to the soybean aphid in soybean cultivars and germplasms. A total of fifty five soybean cultivars or germplasms, including two susceptible and two resistant check varieties, were infested to evaluate their resistance in the field cage and greenhouse test by aphid colonies which derived from wild collected one soybean aphid biotype in Korea. The average number of reproduced soybean aphid was evaluated with 62.7 aphids in the resistant check variety PI 567598B and also estimated with 1,807 aphids for susceptible check variety Williams 82. In soybean varieties and germplasms, the average reproduced soybean aphid populations ranged from the lowest 497 aphids for Junjeori to the highest 3,862 aphids for Mansu. About seventy six percent of soybean cultivars and germplasms were shown high density soybean aphid populations when compared with another susceptible check variety PI 567543C in the field cage test. From the greenhouse test to evaluate aphid index, 87.3% of soybean cultivars or germplasms presented aphid index with 9.0. No soybean cultivars and germplasms were observed with soybean resistant phenotype when regarded a aphid resistant level as less than 10% aphid reproductions compared with susceptible check Williams 82. Although no Korean soybean cultivars were identified with resistant trait to the soybean aphid, we found one great resistant genetic resource PI 567598B in this study. This result will be helpful to further study for providing useful genetic information for soybean researchers.

Regeneration of Plants from EMS-treated Immature Embryo Cultures in Soybean [Glycine max(L.) Merr.]

  • Van, Kyu-Jung;Jang, Hyun-Ju;Jang, Young-Eun;Lee, Suk-Ha
    • Journal of Crop Science and Biotechnology
    • /
    • v.11 no.2
    • /
    • pp.119-126
    • /
    • 2008
  • Since somatic embryogenesis combined with ethylmethane sulfonate(EMS) treatments is the most efficient technique for mutagenesis, the embryogenic capacity of four soybean cultivars was evaluated at different EMS concentrations, treatment times, and preculture durations. Two to 4 mm long immature cotyledons were placed in induction medium after EMS treatment, and the numbers of somatic embryos formed per explant were counted four weeks after culture initiation. We observed genotypic differences in the efficiency of somatic embryogenesis from immature embryos among four cultivars treated with different concentrations of EMS for six hours. Cultivars, Sinpaldalkong 2 and Jack, displayed highly efficient somatic embryogenesis regardless of EMS concentration, whereas very low efficiency or no survival was observed in Jinju 1 and Iksannamulkong cultivars. Preculture duration did not influence the efficiency of somatic embryogenesis. Because Sinpaldalkong 2 exhibited the best somatic embryogenesis, much higher concentrations of EMS were used to test somatic embryo formation under different periods of time in this cultivar. Three and six hour treatments with both 1 and 2 mM EMS yielded higher embryo formation than longer periods of time. Increasing the time with embryos in 2 mM EMS caused a reduction in somatic embryogenesis in Sinpaldalkong 2, but many chlorophyll-deficient soybean variants were identified in the $M_1R_0$ and $M_2R_1$ generations. In addition to Jack, Sinpaldalkong 2 is a good genotype for plant regeneration from EMS-treated immature embryo cultures.

  • PDF

Optimization of SNP Genotyping Assay with Fluorescence Polarization Detection

  • Cai Chun Mei;Van Kyujung;Kim Moon Young;Lee Suk-Ha
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.5
    • /
    • pp.361-367
    • /
    • 2005
  • Single nucleotide polymorphisms (SNPs) are valuable DNA markers due to their abundance and potential for use in automated high-throughput genotyping. Numerous SNP genotyping assays have been developed. In this report, one of effective and high throughput SNP genotyping assays, which was named the template-directed dye-terminator incorporation with fluorescence polarization detection (FP-TDI) was described. Although the most of this assay succeed, the objective of this work was to deter­mine the reasons for the failures, find ways to improve the assay and reduce the running cost. Ninety $F_2$-derived soybean, Glycine max (L.) Merr., RILs from a cross between 'Pureunkong' and 'Jinpumkong 2' were genotyped at four SNPs. FP measurement was done on $Victot^3$ microplate reader (perkinelmer Inc., Boston, MA, USA). Increasing the number of thermal cycles in the single-base extension step increased the separation of the FP values between the products corresponding to different genotypes. But in some assays, excess of heterozygous genotypes was observed with increase of PCR cycles. We discovered that the excess heterozygous was due to misincorporation of one of the dye­terminators during the primer extension reaction. After pyrophosphatase incubation and thermal cycle control, misincoporation can be effectively prevented. Using long amplicons instead of short amplicons for SNP genotyping and decreasing the amount of dye terminator and Acyclopol Taq polymerase to 1/2 or 1/3 decreased the cost of the assay. With these minor adjustments, the FP-TDI assay can be used more accurately and cost-effectively.

Yield and Seed Quality as Affected by Water Deficit at Different Reproductive Growth Stages in Soybean

  • Kim, Wook-Han;Hong, Byung-Hee;Kim, Seok-Dong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.4
    • /
    • pp.321-329
    • /
    • 1999
  • The effect of water deficits on soybean [Glycine max (L.) Merr.] could appear on seed quality through changes of morphological plant characteristics. Two Korean genotypes, Hwangkeum (determinate growth habit) and Muhan (indeterminate growth habit), were used to examine the influences of treatment stage and method of water deficit during reproductive growth period on yield and seed quality of soybean. Water deficit at R5 or R6 stages was as damaging to seed quality as double water-deficit treatments at R2+R5 or R2+R6. However, seed from double water-deficit treatment tended to have lower oxidation-reduction potential compare to the corresponding single water-deficit treatment. In comparison with Muhan, Hwangkeum had significantly greater oxidation-reduction potential value. Seed yield per plant in both genotypes depended greatly on seed yield of branches. However, the proportion of number of branch seed to total seed umber in Hwangkeum was increased as the water deficit was applied during later reproductive stage, whereas, in Muhan the proportion was lower. Water-deficit treatments including the single and double water-deficit treatments and non-stressed treatment were able to be classified into five groups for Hwangkeum and four groups for Muhan based on the influences on yield components, number of pod, number of seed, and single seed weight, using principal component analysis. In both genotypes, R2+R5 water-deficit treatment decreased number of pod and seed, but increased single seed weight. On the contrary, R6 or R2+R6 stress increased the pod and seed number, but decreased single seed weight.

  • PDF

Effects of Weed Interference and Starter Fertilizer on Subsequent Seed Germination and Vigour of Soybean (Glycine max [L.] Merr.)

  • Mohammadi, G.R.;Amiri, F.
    • Korean Journal of Weed Science
    • /
    • v.32 no.1
    • /
    • pp.17-24
    • /
    • 2012
  • The study was conducted to investigate the effect of weed interference and starter fertilizer on subsequent soybean seed quality at the Agricultural Research Farm and Laboratory of Razi University, Kermanshah, Iran. Two factorial experiment was laid-outon a randomized complete block design with four replications. First factor was starter fertilizer levels (0 and 25 kg $ha^{-1}$) applied in the forms of monoammonium phosphate, the second factor was different weed interference periods consisted of five initial weed-free periods (in which, plots were kept free of weeds for 0, 15, 30, 45 and 60 days after crop emergence (DAE) and then weeds were allowed to grow until harvest) and five initial weed-infested periods (in which, weeds were allowed to grow for 0, 15, 30, 45 and 60DAE, after which the plots were kept free of weeds until harvest). Full season weedy condition reduced 100-seed weight, seed germination percentage and seedling dry weight by 25.9, 13.3 and 22.5%, respectively and increased mean germination time and seed electrical conductivity by 55.8 and 24.3%, respectively as compared with full season weed-free control. However, the traits under study were not significantly influenced when field was kept free of weeds for at least 45 DAE (R1) or weedy condition was continued for less than 30 DAE (V8). There was a significant and negative correlation between weed biomass and seed weight (r = -0.93), so that when weed free condition was less than 45 DAE or weed infested period was continued for at least 30 DAE, soybean plants produced wrinkled and underdeveloped seeds with lower weights and qualities. Moreover, soybean seed quality reduction due to weed interference was more evident when starter fertilizer was applied and weeds interfered with soybean from the beginning of the growing season. Information from the present study is beneficial in soybean seed production systems and where farmers use the harvested seeds for the following planting.

Effect of Planting Date and Plant Density on Yield and Quality of Soybean Forage in Jeju

  • Kang, Young-Kil;Kim, Hyun-Tae;Cho, Nam-Ki;Kim, Yeong-Chan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.2
    • /
    • pp.95-99
    • /
    • 2001
  • Soybean [Glycine max (L.) Merr.) is known to produce the highest total digestible mutrients (TDN) yield among summer grain legumes in Jeju area but little is known about the effects of cultural practices on forage yield and quality. A determinate soybean cv. Baegunkong was planted on 5 June, 20 June, and 3 July and grown at four plant densities (30, 50, 70 and 90 plants $m^{-2}$ in 1998 in Jeju to evaluate the effects of planting date and plant density on the yield and quality of soybean forage. Days to flowering decreased from 47 to 38 days, average plant height from 61 to 51cm and main stem diameter from 6.31 to 5.00mm as planting was delayed from 5 June to 3 July. Average plant height quadratically increased from 45 to 62cm as plant density increased from 30 to 90 plants $m^{-2}$. Planting date did not affect the average dry matter, crude protein, and TDN yields. The average dry matter and TDN yields displayed a quadratic response to plant density and the optimum plant density for both dry matter and TDN yields was estimated about 60 plants $m^{-2}$. Plant density had no effect on crude protein yield. Planting date did not significantly influence forage quality. The crude protein content was not significantly influenced by plant density. Increasing plant density slightly increased acid detergent fiber content but slightly decreased TDN content.

  • PDF

Profiles of Compositional Components in Vegetable Soybeans (Glycine max (L.) Merr.)

  • Lee, Jin-Hwan;Baek, In-Youl;Ko, Jong-Min;Kang, Nam-Suk;Kim, Hyun-Tae;Han, Won-Young;Shin, Sang-Ouk;Park, Keum-Yong;Oh, Ki-Won;Ha, Tae-Joung;Park, Ki-Hun
    • Journal of Applied Biological Chemistry
    • /
    • v.50 no.2
    • /
    • pp.63-69
    • /
    • 2007
  • Compositional components such as isoflavone, protein, oil, fatty acid, and free sugar in Korean vegetable soybeans were examined with four cultivars including Hwaeomputkong, Keunolkong, Mirang, and Danmi 2. In the isoflavone, Mirang cultivar showed the highest content ($967.1{\mu}g/g$), whereas Keunolkong was the lowest content ($535.9{\mu}g/g$). The malonylglucosides were the predominant isoflavone type followed by the glucoside, aglycone, and acetyl glucoside forms, respectively. In the protein content, Hwaeomputkong was the lowest (41.7%) and Danmi 2 was the highest (45.9%). The oil contents were 11.5 to 21.2% and Mirang cultivar was the lowest. The fatty acid compositions of the oil extracts exhibited that linoleic acid was the highest (33.6-42.5%), followed by oleic, palmitic, linolenic, and stearic acids. Whereas, oleic acid ($46.7{\pm}2.0%$) was more than linoleic acid ($33.6{\pm}1.3%$) in Mirang cultivar. In the free sugar contents, Hwaeomputkong cultivar showed the highest level and sucrose ($5.52{\pm}0.49%$) appeared to be most prevalent in vegetable soybeans.

Differential Response of Soybean Cultivars to Alachlor, Linuron, and Metribuzin (Alachlor, Linuron과 Metribuzin의 약해반응에 대한 대두품종간 차이)

  • 변종영;최창열
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.25 no.4
    • /
    • pp.66-72
    • /
    • 1980
  • Forth soybean (Glycine max (L.) Merr.) cultivars were evaluated to determine the extent of crop injury caused by differential sensitivity of cultivars to two rates of alachlor, linuron, and metribuzin. Most cultivars were relatively tolerant of alachlor at 120 and 240g/10a and also linuron at 62.5 and 125g/10a. However, many cultivars were highly sensitive to metribuzin at 50 and 100g/10a. Some of the most sensitive cultivars were ‘Kyungnam 2’, ‘Toyosuzu’, ‘Noki 1’, ‘Iwade 2’, and ‘Hampton’. Metribuzin also showed a very narrow margin of safety to soybean cultivars.

  • PDF