• 제목/요약/키워드: Gluteus-Medius

Search Result 144, Processing Time 0.023 seconds

Comparison of Dynamic Muscle Activation during Fente Execution in Fencing Between Wearing Weighted and Waterbag Vests

  • Ja Yeon Lee;Chae Kwan Lee;Shuho Kang;Il Bong Park
    • Korean Journal of Applied Biomechanics
    • /
    • v.33 no.4
    • /
    • pp.119-127
    • /
    • 2023
  • Objective: This study aimed to compare the activity of the trunk and leg muscles while performing fente (in fencing) wearing weighted and waterbag vests. Method: The electromyography test was used to measure and analyze the activation of the trunk and leg muscles. Eight active fencers from B University (age: 19.5 ± 0.66 years, height: 179.75 ± 5.93 cm, weight: 72 ± 6.32 kg) were selected for this study. Results: According to the EMG analysis results of the 4 muscles measured in this study, left-right differences were observed for rectus abdominis and external oblique abdominis, but left-right differences between the groups were not significant. The gluteus medius muscle was not significantly different from the adductor muscle, but there were significant differences between the groups. Conclusion: The electromyographic analysis of the four muscles measured in this study revealed no significant difference between the left and right recti abdominis and external obliques depending on the vests. However, significant differences were observed between the left and right gluteus medius and adductor longus. Our results can be interpreted as the effects of the inherent movements involved in the fente. Furthermore, our results indicate that the weight transfer while wearing a waterbag vest, which provides an unstable environment, increased the activity of leg muscles.

Correlation between Pelvic Tilt Angle with Trunk Motion and Trunk Extensor during Trunk Forward Flexion in Adults Aged 2,30 (2,30대 정상 성인남녀의 몸통 굽힘 시 골반의 기울임과 몸통 움직임 및 몸통 폄 근의 상관관계 연구)

  • Park, Youngju;Lee, Sangyeol
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.7 no.1
    • /
    • pp.81-88
    • /
    • 2019
  • Purpose : The purpose of this study was to examine if there is any correlation between pelvic tilt angle and trunk motion and trunk extensor during trunk forward flexion and to measure trunk motion, onset time of trunk motion, and onset time of trunk extensor activation. Methods : The subjects of this study were 42 healthy adults. The subjects had no back pain due to neurological disease and no experience of back surgery. After pelvic tilt angle was measured, each trunk forward flexion was performed three times. Trunk motion and onset time of trunk motion were measured using Myomotion. Four sensors were used, with one located at the upper thoracic (below $C_7$), the lower thoracic ($T_{12}-L_1$), the sacrum ($S_1$), and at the center of the anterior femur. Onset time of trunk extensors (spinalis, longissimus, gluteus medius, gluteus maximus, biceps femoris, and gastrocnemius) activation was measured using a wireless surface EMG. The EMG amplitude was normalized by using the reference voluntary contraction (RVC). The statistical significance of the results were evaluated using Pearson's correlation test. Results : The correlation between pelvic tilt angle and lumbar motion, onset time of pelvis motion, and onset time of gluteus medius activation was statistically significant in a positive direction (p<.05). The correlation between pelvic tilt angle with pelvis motion, onset time of lumbar motion, and onset time of longissimus activation showed a statistically significant negative correlation (p<.05). Conclusion : The study results provide a significant contribution to our understanding of the lumbar load at the initial stage of trunk flexion. Therefore, it may be possible to provide basic data for evaluation and treatment, such as orthodontic treatment for alignment of the spine and back pain. In addition, it is necessary to focus on normal exercise pattern reeducation as well as pelvic correction during exercise in daily life or in industrial fields.

Effects of Isometric Hip Extension Using Thera-band on Hip Muscle Activities During Side-lying Hip Abduction Exercise in Participants With Gluteus Medius Weakness

  • Sae-hwa Kim;Hyun-ji Lee;Seok-hyun Kim;Seung-min Baik;Heon-seock Cynn
    • Physical Therapy Korea
    • /
    • v.31 no.2
    • /
    • pp.123-130
    • /
    • 2024
  • Background: Weakness of gluteus medius (Gmed) is related with musculoskeletal disorders. Individuals who experience weakness in the Gmed may activate the tensor fasciae latae (TFL) as a compensatory mechanism. Application of isometric hip extension (IHE) with Thera-band may affect the activities of the Gmed, gluteus maximus (Gmax), and TFL, and the activity ratio of Gmed/TFL during side-lying hip abduction (SHA). Objects: To determine the influences of IHE during SHA on Gmed, Gmax, and TFL activities in participants with Gmed weakness. Methods: Three types of SHA exercises were performed: 1) traditional SHA in the frontal plane (SHA-T), 2) SHA with IHE applying Thera-band in the frontal plane (SHA-IHE), 3) and SHA with isometric hip flexion (IHF) applying Thera-band in the frontal plane (SHA-IHF). Results: SHA-IHE significantly showed higher Gmed and Gmax activities than SHA-T and SHA-IHF. SHA-IHF significantly showed higher activity of TFL than SHA-T or SHA-IHE. The activity ratio of Gmed/TFL was significantly higher in the SHA-IHE, SHA-T, and SHA-IHF, in that order. Conclusion: The SHA-IHE resulted in higher activities of Gmed, Gmax and a higher muscle ratio of Gmed/TFL.

Effects of Foam Roller Application and Movement on EMG responses of Trunk and Lower Limb muscles in Pilates (필라테스 동작시 폼롤러의 적용과 움직임에 따른 몸통근과 하지근의 근전도 반응에 미치는 영향)

  • Jeong, Seo-Hyun;Cho, Sang-Woo;Jung, Sang-Hoon;Kim, Ki-Hong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.905-913
    • /
    • 2018
  • The purpose of this study is to investigate the difference of muscle activity according to application of a foam roller during pilates. The 8 male subjects were selected and quadruped position, bridge, and core control movement of pilates were randomly assigned to 9 movements on a static mat motion, static foam-roller motion, and dynamic foam-roller actions. This program was conducted once at intervals of 1 week. The muscle activity of erector spinae, rectus abdominis, external oblique, gluteus medius, rectus femoris, and biceps femoris were measured and the collected data was analyzed by one-way ANOVA. First, in the quadruped, the rectus abdominis and external oblique, rectus femoris of the dynamic foam-roller actions showed higher muscle activity than the static mat motion and the static foam-roller motion(p <.001), gluteus medius muscle activity was also significantly higher (p <.05). biceps femoris were significantly higher in static foam-roller motions than in static mat-motion and dynamic foam-roller actions(p <.05). Second, biceps femoris muscle activity was highest in dynamic foam-roller actions than static mat-motion and static foam-roller motions during bridge(p <.001). Third, in the sitting core control, the rectus abdominis and gluteus medius of the dynamic foam-roller actions showed higher muscle activity than the static mat motion and the static foam-roller motion(p <.001). and activity of erector spinae muscle was also significantly higher (p <.01). external oblique were significantly higher in static mat-motion than in static foam-roller motions and dynamic foam-roller actions(p <.05). Considering the muscle activity during pilates exercise, it would be more effective to apply the method and difficulty.

A Study on the Stress and Strain Analysis of Human Muscle Skeletal Model in Kendo Three Typical Attack Motions (세 가지 주요 검도 공격 동작에서의 근-골격계 응력과 번형률 해석에 관한 연구)

  • Lee, Jung-Hyun;Lee, Young-Shin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.9
    • /
    • pp.126-134
    • /
    • 2008
  • Kendo is one of the popular sports in modem life. Head, wrist and thrust attack are the fast skill to get a score on a match. Human muscle skeletal model was developed for biomechanical study. The human model was consists with 19 bone-skeleton and 122 muscles. Muscle number of upper limb, trunk and lower limb part are 28, 60, 34 respectively. Bone was modeled with 3D beam element and muscle was modeled with spar element. For upper limb muscle modelling, rectus abdominis, trapezius, deltoideus, biceps brachii, triceps brachii muscle and other main muscles were considered. Lower limb muscle was modeled with gastrocenemius, gluteus maximus, gluteus medius and related muscles. The biomechanical stress and strain analysis of human muscle was conducted by proposed human bone-muscle finite element analysis model under head, wrist and thrust attack for kendo training.

Development on Human Muscle Skeletal Model and Stress Analysis of Kumdo Head Hitting Motion (검도 머리치기 동작의 인체 근골격 모델개발 및 응력해석)

  • Lee, Jung-Hyun;Lee, Se-Hoon;Lee, Young-Shin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.11
    • /
    • pp.116-125
    • /
    • 2007
  • Human muscle skeletal model was developed for biomechanical study. The human model was consists with 19 bone-skeleton and 122 muscles. Muscle number of upper limb, trunk and lower limb part are 28, 60, 34 respectively. Bone was modeled with 3D beam element and muscle was modeled with spar element. For upper limb muscle modelling, rectus abdominis, trapezius, deltoideus, biceps brachii, triceps brachii muscle and other main muscles were considered. Lower limb muscle was modeled with gastrocenemius, gluteus maximus, gluteus medius and related muscles. The biomechanical stress and strain analysis of human was conducted by proposed finite element analysis model under Kumdo head hitting motion. In this study structural analysis has been performed in order to investigate the human body impact by Kumdo head hitting motion. As the results, the analytical displacement, stress and strain of human body are presented.

Comparison Between Right and Left Muscle Activities of Hip and Trunk During Manual Task in Asymmetric Weight-Bearing Posture (비대칭적 입식자세에서 상지 조립 작업 시 체간 및 둔부 근육의 좌우 근활성도 비교)

  • Choung, Ji-Yun;Jeon, Hye-Seon;Lee, Chung-Hwi;Lee, Jeon-Won
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.3
    • /
    • pp.279-286
    • /
    • 2010
  • The purpose of this study was to compare the electromyographic(EMG) activities of trunk and hip muscles between right and left sides while subjects performed prolonged manual task in asymmetric and symmetric weight-bearing posture. Fifteen healthy male college students were recruited for this study. The subjects were asked to perform bimanual upper extremity task for 6 minutes in two different standing postures. In the symmetric weight-bearing posture, the subjects were standing with evenly distributed body weights to both legs. In the asymmetric weight-bearing posture, the subjects distributed about 90% of their body weight onto their preferred(supporting) leg and 10% of their body weight onto the opposite leg while they were standing. EMG activities of the right and left internal oblique, erector spinae, gluteus maximus, and gluteus medius were measured and normalized as % MVIC. Then the EMG data were statistically analyzed using paired t-tests. The EMG activities of all measured muscles were not significantly different between the right and left side in the symmetrical weight-bearing posture(p>0.05). However, the EMG of the supporting side internal oblique was significantly lower than the opposite side(p<0.05), and the EMG of the erector spinae, gluteus maximus, and gluteus medius were significantly greater on the supporting side(p<0.05). The results of this study support that unbalanced use of right and left muscle possibly causes the changes in muscle length which results in asymmetry of trunk and hip muscles. Furthermore, the uneven weight support onto right and left legs will cause a distortion of viscoelastic ligaments around hip and sacroiliac joints in the long run. Further studies to determine the effect of various manual tasks on the trunk and hip muscles as well as the effect of asymmetrical weight-bearing standing posture on hip and back muscle fatigue may be required.

Effect of Hip External Rotation Angle on Pelvis and Lower Limb Muscle Activity During Prone Hip Extension (엎드린 자세에서 고관절 신전 시 고관절 외회전 각도가 골반과 하지 근활성도에 미치는 영향)

  • Oh, Yun-Chan;Cynn, Heon-Seock;Yi, Chung-Hwi;Jeon, Hye-Seon;Yoon, Tae-Lim
    • Physical Therapy Korea
    • /
    • v.21 no.3
    • /
    • pp.1-10
    • /
    • 2014
  • The aim of this study was to investigate the effect of hip external rotation angle on pelvis and lower limb muscle activity during prone hip extension. Sixteen healthy men were recruited for this study. Each subject performed an abdominal drawing-in maneuver (ADIM) in a prone position, and extended the dominant hip at three different hip external rotation angles ($0^{\circ}$, $20^{\circ}$, $40^{\circ}$) with a $30^{\circ}$ hip joint abduction. Activity of the gluteus maximus (G Max), gluteus medius (G Med), and hamstring (HAM) and the G Max/HAM and G Med/HAM ratios were determined with surface electromyography (EMG). The EMG signal was normalized to 100% maximum voluntary isometric contractions (MVICs) and expressed as %MVIC. Data were analyzed by one-way repeated analysis of variance (alpha level=.05) and the Bonferroni post hoc test. Significant differences in G Max and G Med muscle activity were noted among the three different hip external rotation angles. G Max muscle activity increased significantly at both $40^{\circ}$ (p=.006) and $20^{\circ}$ (p=.010) compared to a $0^{\circ}$ hip external rotation angle. G Med muscle activity increased significantly at $20^{\circ}$ (p=.013) compared to a $40^{\circ}$ hip external rotation angle. The G Max/HAM activity ratio increased significantly at both $40^{\circ}$ (p=.004) and $20^{\circ}$ (p=.014) compared to a $0^{\circ}$ hip external rotation angle. The G Med/HAM activity ratio increased significantly at $20^{\circ}$ (p=.013) compared to a $40^{\circ}$ hip external rotation angle. In conclusion, $40^{\circ}$ and $20^{\circ}$ hip external rotation angles are recommended to increase G Max activity, and $20^{\circ}$ hip external rotation is advocated to enhance G Med muscle activity during prone hip extension with ADIM and $30^{\circ}$ hip abduction in healthy subjects.

Association Between Pelvic Bone Computed Tomography-Derived Body Composition and Patient Outcomes in Older Adults With Proximal Femur Fracture

  • Tae Ran Ahn;Young Cheol Yoon;Hyun Su Kim;Kyunga Kim;Ji Hyun Lee
    • Korean Journal of Radiology
    • /
    • v.24 no.5
    • /
    • pp.434-443
    • /
    • 2023
  • Objective: To investigate the association between pelvic bone computed tomography (CT)-derived body composition and patient outcomes in older adult patients who underwent surgery for proximal femur fractures. Materials and Methods: We retrospectively identified consecutive patients aged ≥ 65 years who underwent pelvic bone CT and subsequent surgery for proximal femur fractures between July 2018 and September 2021. Eight CT metrics were calculated from the cross-sectional area and attenuation of the subcutaneous fat and muscle, including the thigh subcutaneous fat (TSF) index, TSF attenuation, thigh muscle (TM) index, TM attenuation, gluteus maximus (GM) index, GM attenuation, gluteus medius and minimus (Gmm) index, and Gmm attenuation. The patients were dichotomized using the median value of each metric. Multivariable Cox regression and logistic regression models were used to determine the association between CT metrics with overall survival (OS) and postsurgical intensive care unit (ICU) admission, respectively. Results: A total of 372 patients (median age, 80.5 years; interquartile range, 76.0-85.0 years; 285 females) were included. TSF attenuation above the median (adjusted hazard ratio [HR], 2.39; 95% confidence interval [CI], 1.41-4.05), GM index below the median (adjusted HR, 2.63; 95% CI, 1.33-5.26), and Gmm index below the median (adjusted HR, 2.33; 95% CI, 1.12-4.55) were independently associated with shorter OS. TSF index (adjusted odds ratio [OR], 6.67; 95% CI, 3.13-14.29), GM index (adjusted OR, 3.45; 95% CI, 1.49-7.69), GM attenuation (adjusted OR, 2.33; 95% CI, 1.02-5.56), Gmm index (adjusted OR, 2.70; 95% CI, 1.22-5.88), and Gmm attenuation (adjusted OR, 2.22; 95% CI, 1.01-5.00) below the median were independently associated with ICU admission. Conclusion: In older adult patients who underwent surgery for proximal femur fracture, low muscle indices of the GM and gluteus medius/minimus obtained from their cross-sectional areas on preoperative pelvic bone CT were significant prognostic markers for predicting high mortality and postsurgical ICU admission.

Effects of Lumbar Stabilization Using Pressure Biofeedback Unit During Hip Abduction in Side-Lying in Patients With Low Back Pain

  • Seo, Young-taek;Chon, Seung-chul
    • Physical Therapy Korea
    • /
    • v.23 no.2
    • /
    • pp.67-74
    • /
    • 2016
  • Background: Lumbar stabilization (LS) improve the thickness of the quadratus lumborum (QL) muscle and muscle activity of the gluteus medius (GM) muscle during hip abduction in a side-lying position in patients with low back pain (LBP). Objects: The purpose of this study was to assess the effects of LS on muscle thickness of QL and muscle activity of GM during hip abduction in side-lying in patients with LBP. Methods: The study included 32 patients with LBP, who were randomly divided into the control group and experimental group, each with 16 patients. All subjects performed $35^{\circ}$ preferred hip abduction (control group) and $35^{\circ}$ hip abduction with LS (experimental group) during side-lying. An ultrasonography and a surface electromyography were used to measure the thickness of the QL muscle, and the muscle activities of the GM muscle respectively. Independent t-test was used to compare the muscle thickness of the QL and the muscle activity of the GM muscle, respectively. Results: Anterio-posterior diameter in the muscle thickness of QL muscle was decreased significantly in hip abduction with LS more than in preferred hip abduction (p<.001), but medio-lateral diameter in the muscle thickness of QL muscle was not significantly different between in preferred hip abduction and in hip abduction with LS (p=.06). The muscle activity of GM was increased significantly in hip abduction with LS more than in preferred hip abduction (p<.001). Conclusion: These findings suggest that hip abduction with LS could be recommended as a hip abduction for LS and a prevention unwanted compensatory pelvic lateral tilting movement.