• Title/Summary/Keyword: Glutathione-Stransferase

Search Result 17, Processing Time 0.029 seconds

Effects of Dietary Perilla Oil and Corn Oil on Hepatic Mixed-Function Oxidase System and Antioxidant Enzyme Activities in 2-acetylaminofluorene-treated Rat

  • Kwak, Chung-Shil;Kim, Hye-Gyeong;Choi, Hay-Mie
    • BMB Reports
    • /
    • v.28 no.5
    • /
    • pp.420-426
    • /
    • 1995
  • This study was conducted to compare the effects of n-6 linoleic acid and n-3 linolenic acid on lipid peroxidation and the activities of enzymes defending against oxidation, which are involved in the tumor promotion, and histolOgical changes of hepatocarcinogen treated rat liver. In this study, weanling male Sprague-Dawley rats were fed one of three diets, containing 15% (w/w) of beef fat (BF), com oil (CO) or perilla oil (PO), for 11 weeks. During the 3rd week, experimental groups were injected with 2-AAF (50 mg/kg of BW) intraperitoneally 3 times. Findings show that the com oil diet group has greater liver MDA content than the beef fat and perilla oil diet groups. Also, it is observed that the perilla oil diet group has lower MDA content than beef fat and com oil diet groups, even though perilla oil is more desaturated than beef fat and com oil. In terms of activity, mixed-function oxidase activity is not Significantly affected by the different dietary fats and 2-AAF treatment. GSH-peroxidase, GSH-reductase and GSH-Stransferase activities are significantly higher in the CO+AAF group than those of the other groups. GST and GSH-Px are activated by 2-AAF treatment in the com oil diet group only. The hepatocytes of the BF+AAF group were the most severely degenerated, the second was the CO+AAF group and the least was the PO+AAF group. It was also found that dietary com oil increased lipid peroxidation and activated defense enzymes against oxidation in liver, but dietary perilla oil did not, or supressed defense enzymes. Therefore it is concluded that dietary n-3 linolenic acid in perilla oil inhibits lipid peroxidation and carcinoenesis in rat liver following 2-AAF treatment.

  • PDF

Glutathione S-transferases (GSTM1, GSTT1 and GSTP1) and N-acetyltransferase 2 Polymorphisms and the Risk of Gastric Cancer (위암 환자에서 Glutathione S-transferases (GSTM1, GSTT1, GSTP1) 및 N-acetyltransferase 2 유전자 다형성 분포)

  • Hong, Su-Hyung;Kim, Jung-Wan;Kim, Ho-Gak;Park, In-Kyu;Ryoo, Jun-Wook;Lee, Chang-Hyeong;Sohn, Yoon-Kyung;Lee, Jong-Young
    • Journal of Preventive Medicine and Public Health
    • /
    • v.39 no.2
    • /
    • pp.135-140
    • /
    • 2006
  • Objectives : Polymorphisms of genes from glutathione Stransferases (GSTs) and N-acetyltransferase 2 (NAT2) have been associated with increased susceptibility to various cancers. Previous results showed that East Asians such as Koreans, Japanese and Chinese have a much higher frequency of the GSTM1 and GSTT1 null genotypes and NAT2 rapid acetylator type. Therefore, we investigated the association between the polymorphic types of GSTs (GSTM1, GSTT1, GSTP1) and NAT2 and the incidence of gastric cancer which is one of the most prevalent cancers among the East Asians. Methods : It was performed in a case-control study consisting of 238 healthy subjects and 108 cancer patients (54 distal and 54 proximal carcinomas). We also evaluated the association between GSTs and NAT2 and the risk factors for gastric cancer such as alcohol consumption, smoking, H. pylori infection, family history of gastric cancer, and tumor location. Results : In our study, the percentage of cases whose hometown was rural was higher than those of controls (odds ratio (OR) =2.88; 95% CI=1.72-4.76), and the frequency of the lower socio-economic status increased significantly in patients (OR=2.53; 95% CI=1.59-4.02). There was no significant difference in the GST polymorphic types between the cases and controls. However, NAT2 rapid or intermediate acetylator types were frequently detected in the cases with family history of gastric cancer (OR=1.92; 95% CI=1.79-26.0). Conclusions : These results suggest that the hometown and socio-economic status are important environmental factors for gastric carcinogenesis, and NAT2 polymorphic types could be associated with familial gastric carcinoma.

The Stability, and Efficacy Against Penicillin-Resistant Enterococcus faecium, of the Plectasin Peptide Efficiently Produced by Escherichia coli

  • Chen, Xin;Wen, Yaoan;Li, Ling;Shi, Jiawei;Zhu, Zhe;Luo, Yuwen;Li, Yun;Chen, Rui
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.7
    • /
    • pp.1007-1014
    • /
    • 2015
  • Plectasin, the first defensin extracted from a fungus (the saprophytic ascomycete Pseudoplectania nigrella), is attractive as a prospective antimicrobial agent. The purpose of this study was to establish a bacterium-based production system and evaluate the antimicrobial activity of the resulting plectasin. A gene encoding plectasin, with the codon preference of Escherichia coli, was optimized based on its amino acid sequence, synthesized using genesplicing with overlap extension PCR, and inserted into the expression vector pGEX-4T-1. The fusion protein was expressed in the soluble fraction of E. coli and purified using glutathione Stransferase affinity chromatography. Plectasin was cleaved from the fusion protein with thrombin and purified by ultrafiltration. The purified plectasin showed strong, concentrationdependent antimicrobial activity against gram-positive bacteria, including antibiotic-resistant bacteria, especially penicillin-resistant Enterococcus faecium. This antimicrobial activity was equal to chemically synthesized plectasin and was maintained over a wide range of pH and temperatures. This soluble recombinant expression system in E. coli is effective for producing plectasin at a relatively lower cost, and higher purity and efficiency than prior systems, and might provide a foundation for developing a large-scale production system. Overall, plectasin shows potential as a novel, high-performance, and safe antibiotic for the treatment of refractory diseases caused by drug-resistant bacterial strains.

Cancer Chemopreventive Effect of Spirogyra Neglecta (Hassall) Kützing on Diethylnitrosamine-Induced Hepatocarcinogenesis in Rats

  • Thumvijit, Tarika;Taya, Sirinya;Punvittayagul, Charatda;Peerapornpisal, Yuwadee;Wongpoomchai, Rawiwan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.4
    • /
    • pp.1611-1616
    • /
    • 2014
  • Spirogyra neglecta, a freshwater green alga, is a local food in the northern and northeastern parts of Thailand. This investigation explored the anticarcinogenicity of S neglecta and its possible cancer chemopreventive mechanisms in rats divided into 14 groups. Groups 1 and 10 served as positive and negative control groups, respectively. Groups 1-9 were intraperitoneally injected with diethylnitrosamine (DEN) once a week for 3 weeks. Groups 10-14 received normal saline instead. One week after the last DEN injection, groups 2-5 were administered for 9 consecutive weeks various doses of S neglecta extract (SNE) and dried S neglecta (SND), mixed with basal diet. Groups 6-9 and 11-14 similarly were administered various doses of SNE and SND starting from the first week of the experiment. Administration of SNE and SND was not associated with formation of glutathione-Stransferase placental form (GST-P) positive foci in rat liver. SNE and SND during initiation phase significantly reduced the number of GST-P positive foci in rats injected with DEN. The number of GST-P also diminished in groups treated with SNE and SND after injection with DEN, except for the low dose extract group. SNE showed stronger anticarcinogenic potency than SND. Furthermore, SNE also decreased the number of Ki-67 positive cells. However, the numbers of TUNEL-positive cells in the liver of the SNE-treated groups were not statistically different from the controls. The GST activity in 50 mg/kg bw of SNE and 1% of SND groups was significantly increased as compared to the positive control. In conclusion, Spirogyra neglecta (Hassall) K$\ddot{u}$tzing showed cancer chemopreventive properties at the early stages of diethylnitrosamine-induced hepatocarcinogenesis in rats. Possible inhibitory mechanisms include enhancement of the activities of some detoxifying enzymes and/or suppression of precancerous cells.

Proteomics of Protein Expression Profiling in Tissues with Different Radiosensitivity (Proteomics를 이용한 마우스 조직에서의 방사선 감수성 조절 단백질의 탐색)

  • An, Jeung-Hee;Kim, Ji-Young;Seong, Jin-Sil
    • Radiation Oncology Journal
    • /
    • v.22 no.4
    • /
    • pp.298-306
    • /
    • 2004
  • Purpose: The purpose of this study was to identify Radiosensitivity of proteins in tissues with different radiosensitivity. Materials and Methods: C3H/HeJ mice were exposed to 10 Gy. The mice were sacrifiud 8 hrs after radiation. Their spleen and liver tissues were collected and analyzed histologicaly for apoptosis. The expressions of radiosusceptibillty protein were analyzed by 2-dimensional electrophoresis and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Resilts: The Peak of apoptosis levels were $35.3{\pm}1.7{\%}$ in spleen and $0.6{\pm}0.2{\%}$ in liver at 8 hrs after radiation. Liver, radioresistant tissues, showed that the levels of ROS metabolism related to proteins such as cytochromm c, glutathione S transferase, NADH dehydrogenase, riken cDNA and peroxiredoxin Vl increased after radiation. The expression of cytochrome c increased significantly in spleen and liver tissues after radiation. In spleen, radiosensitivity tissue, the identified proteins showed a significantly quantitative alteration following radiation. It was categorized as signal transduction, apoptosis, cytokine, Ca signal related protein, stress-related protein, cytoskeletal regulation, ROS metabolism, and others. Conclusion: Differences of radiation-induced apoptosis by tissues specifted were coupled with the induction of related radiosensitivity and radioresistant proteins. The result suggests that apoptosis relate protein and redox proteins play important roles in this radiosusceptibility.

Protective Effect of Monascus pilosus Mycelial Extract on Hepatic Damage in High-Fat Diet Induced-obese Rats (고지방식이로 유도한 비만 흰쥐에서 Monascus pilosus 균사체 추출물의 간 손상 예방효과)

  • Lee, Sang-Il;Kim, Jae-Won;Lee, Ye-Kyung;Yang, Seung-Hwan;Lee, In-Ae;Suh, Joo-Won;Kim, Soon-Dong
    • Journal of Applied Biological Chemistry
    • /
    • v.54 no.3
    • /
    • pp.206-213
    • /
    • 2011
  • Hepatoprotective effects of Monascus pilosus mycelial ethanol extract (MPME) were examined in high-fat diet induced-obese rats. The rats were randomly divided into 2 groups; normal control (NC) and a high-fat and high cholesterol diet group (HFC). The HFC diet group was fed a 5L79 diet supplemented with 15% lard and 1% cholesterol for 3 weeks for induction of obesity. And then, the rats were divided into 4 groups (n=5); the NC, a HFC diet obesity control group (HF), 0.5% MPME supplemented HFC diet group (MPM), and 2% conjugated linoleic acid (CLA) supplemented HFC diet group for 7 weeks. Whereas the daily weight gain of NC and HFC groups were 3.48 g and 4.48 g, respectively, those of MPM and CLA were 3.09 g and 4.38 g, respectively. Furthermore, activity of serum alanine and aspartic aminotransferase in HF was markedly higher than those of NC group, but, the activity in MPM and CLA was significantly lower than HF. Hepatic reduced glutathione content in MPM and CLA was higher than HF. On the contrary, hepatic lipid peroxide content in MPM and CLA was significantly lower than HF. In conclusion, although the precise mechanisms of the hepatoprotective effects of the MPME in this study are unknown, our study provides experimental evidence that MPME may prevent obesity and hepatic damage by high-fat and high cholesterol diet via inhibition of lipid absorption and induction of reactive oxygen spices scavenging enzyme such as superoxide dismutase.

Genetic Polymorphism of Epoxide Hydrolase and GSTM1 in Chronic Obstructive Pulmonary Disease (만성폐쇄성폐질환 발생에 Epoxide hydrolase와 GSTM1유전자 다형성의 의의)

  • Park, Sang Sun;Kim, Eun Joung;Son, Chang Young;Wi, Jeong Ook;Park, Kyung Hwa;Cho, Gye Jung;Ju, Jin Young;Kim, Kyu Sik;Kim, Yu II;Lim, Sung Chul;Kim, Young Chul;Park, Kyung Ok;Na, Kook Joo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.55 no.1
    • /
    • pp.88-97
    • /
    • 2003
  • Background : Although smoking is a major cause of chronic obstructive pulmonary disease (COPD), only 10-20% of cigarette smokers develop symptomatic COPD, which suggests the presence of genetic susceptibility. This genetic susceptibility to COPD might depend on variations in the activities of the enzyme that detoxify hazardous chemical products, such as microsomal epoxide hydrolase (mEPHX) and glutathione-S transferase M1 subunit (GSTM1) genes. Methods : The genotypes of 58 patients with COPD, and 79 age matched control subjects, were determined by a polymerase chain reaction, followed by restriction fragment length polymorphism (PCR-RFLP) for the mEPHX, and multiplex PCR for the GSTM1. Results : GSTM1 was deleted in 53.3% of the subjects. There was no difference in GSTM1 deletion rates between the COPD patients (32/58, 55.2%) and the control subjects (41/79, 51.9%). The combination patterns of two polymorphisms of mEPHX showed slow enzyme activity in 29(21.2%), normal in 73(53.3%) and fast in 32(23.4%). The COPD group (7/57, 12.3%) showed a significantly lower incidence of slow enzyme activity compared to the control subjects (22/77, 28.6%, p<0.05). However, when the COPD and control groups were compared with smokers only, there were no significant differences in the genotypes of GSTM1 and mEPHX. Conclusion : The genotypes of GSTM1 and mEPHX were not significant risk factors of COPD in this cohort of study.