• Title/Summary/Keyword: Glutathione Synthesis

Search Result 99, Processing Time 0.021 seconds

The Effect of Kaempferol, guercetin on Hyaluronan-Synthesis Stimulation in Human Keratinocytes (HaCaT) (인체 피부 세포주 (HaCaT)에서 Kaempferol, Quercetin의 Hyaluronan 합성 촉진 효과에 대한 연구)

  • Kim, Seung-Hun;Nam, Gae-Won;Kang, Byung-Young;Lee, Hae-Kwang;Moon, Seong-Joon;Chang, Ih-Seop
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.31 no.1 s.49
    • /
    • pp.97-102
    • /
    • 2005
  • One of the key molecules involved in skin moisture is hyaluronan (hyaluronic acid, HA) with its associated water of hydration. The predominant component of the ECM (extracellular matrix) of skin is HA. It Is the primordial and the simplest of the GAGs (glycosaminoglycans), a water-sorbed macromolecule In extracellular matrix, Included between the vital cells of epidermis. In the skin, HA was previously thought to derive extlusively from dermis. But, recent studies revealed that HA could be synthesized in epidermis. Flavonoids are polyphenolic compounds that is found mainly in foods of plant origin. Kaempferol was known to increase glutathione synthesis in human keratinocyte. And quercetin blocked PPAR-meidated keratinocyte differentiation as lipoxygenase inhibitors. In this study, we sought to evaluate the effect of flavonid, kaempferol and quercetin on production HA in keratinocyte. We examined the changes of three human hyaluronan synthase genes (HASI, HAS2, HAS3) expression by semi-quantitative RT-PCR when kaempferol or quercetin was added to cultured human keratinocytes. We found that these flavonoids slightly upregulated HAS2, HAS3 mRNA after 24 h. And we investigated the effect on HA production by ELISA. When we evaluated the level of HA in culture medium after 24 h incubation. We found enhanced accumulation of HA in the culture medium. Although the effects of above flavonoids are less than retinoic acid, the data indicate that kaempferol, quercetin can dose-dependently increase the level of HA in epidermis cell line. It suggested that flavonoid, kaempferol, and quercetin increased production of HA in skin and it helped to elevate skin moisture and improve facial wrinkle.

Effects of Vitamin E on the Metallothionein Synthesis in Streptozotocin-induced Diabetic Rats (Streptozotocin유발 당뇨쥐에 있어서 Metallothionein 합성에 미치는 비타민 E의 영향)

  • 이순재;최원경
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.2
    • /
    • pp.183-194
    • /
    • 1995
  • The purpose of this study was to investigate the effect of vitamin E on the synthesis of the metallothionein in the liver of streptozotocin (STZ)-induced diabetic rats. Sprague-Dawley male rats($220{\pm}10mg$) were randomly assigned to one control and three STZ-diabetic groups. Diabetic groups were classified to STZ-0E(vitamine E free diet), STZ-40E(40mg vitamin E/kg of diet) and STZ-400E(400mg vitamin E/kg of diet) according to the level of vitamin E supplementation. Blood glucose levels of STZ-diabetic rats were three times higher than that of control. The contents of vitamin E in liver were lower signifciantly STZ-0E, STZ-40E groups by 50%, 36% compared with that of control. Lipid peroxide values(LPO) in liver were higher 5.6 and 2.5 times in STZ-0E and STZ-40E groups than that of control. Plasma cortisol levels were higher STZ-0E and STZ-40E groups compared with those of control, but cortisol levels were lower significantly in STZ-400E group compared with those of the STZ-0E and the STZ-40E groups. The plasma insulin levels were lower in all three STZ-diabetic group compared with that of control, but were not affected by the level of dietary vitamin E. The metallothionein (MT) contents in liver, kidney and small intestine were five times higher in STZ-0E, STZ-40E and STZ-400E compared with that of control, but STZ-400E group was lower in the MT contents in tissues compared with that of STZ-40E group. Zn-MT peak in STZ-diabetic rats liver increased than that of control by Sephadex G-75, and Zn-MT peak divided into MTI and MTII peaks by DEAE Sephadex A-25 column chromatography. The present results indicate that STZ-induced diabetic rats are more sensitive to oxidative stress, leading to the acceleration of lipid peroxidation process, which can be more promoted low level of dietary vitamin E. And the result may that increase synthesis of MT induced in the liver of diabetic rats increased so it can be sure that the diabetes is one of the MT induce factor by free radical generation. And high vitamin E supplementation reduced total MT contents of liver, kidney and small intestine and the peak of purified Zn-MT. Through the results of these experiments, we can conclude that MT might be the free radical scavenger.

  • PDF

EHen of Flavonoid(+)-Catechin as Stabilizer in Rat Fed Fresh and Peroxidized Fish Oil (어유 및 과산화 어유를 섭칠한 횐쥐에 있어서 플라보노이드 (+)-카데킨의 산화안정 효과)

  • 권미나;최재수;변대석
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.22 no.4
    • /
    • pp.381-391
    • /
    • 1993
  • To evaluate the antioxidizing effect of flavonoid on fish oil and peroxidized fish oil, rats were fed with diets containing 5% corn oil (CO), 5% corn oil and 15% fresh fish oil (FO) or peroxidixed fish oil (PFO) for 4weeks. An half of FO and PFO group rats were injected with 10mg flavonoid (+)-catechin (a day per kg body weight) (FO-C and PFO-C). FO and FO-C group rats showed higher increase in body weight as compared to PFO, PFO-C group rats. Whereas, the opposite result was obtained in case of liver weight increase. In addition, catechin apparently reduced liver weight by 12~17%. Phospholipid, cholesterol, triglyceride and lipid peroxide content in serum and cholesterol, lipid peroxide content in liver and adipose tissue of PFO, PFO-C group rats were significantly higher than those of FO, FO-C one. These results suggested that catechin reduced the synthesis of lipid and protected effectively against lipid peroxidation. In fatty acids profile of neutral lipid and phospholipid, the ratio of polyunsaturated fatty acids (PUFA) versus saturated fatty acids (SFA) in PFO, PFO-C were lower than that of FO or FO-C because of ruduced PUFA. Contrary to our expectation, the enzyme activities of superoxide dismutase(SOD), catalase and glutathione peroxidase (GSH-Px) in rat liver of FO and FO-C group were lower than those of PFO and PFO-C group. These results were quite interesting and might be explained in terms of homeostasis. In case of total lipid in liver, $C_{20:5}$, $C_{22:6}$ fatty acids were decreased in rat fed peroxidized fish oil. In conclusion, catechin was considered to be an antioxidative and hepatoprotective drug and hypolipidemic agent.

  • PDF

Anticarcinogenic Responses of MCF-7 Breast Cancer Cells to Conjugated Linoleic Acid (CLA) (식이성 Conjugated Linoleic Acid (CLA)가 유선암 세포(MCF-7)에서의 항암효과에 미치는 영향)

  • 문희정;이순재;박수정;장유진;이명숙
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.3
    • /
    • pp.418-427
    • /
    • 2003
  • Conjugated linoleic acid (CLA) is the mixture of positional and geometric isomers of linoleic acid (LA, C18:2 $\omega$6), which is found abundantly in dairy products and meats. This study was peformed to investigate the anticarcinogenic effect of CLA in MCF-7 breast cancer cells. MCF-7 cell were treated with LA and CLA at the various concentrations of 15, 30, 60, 120 UM each. After incubation for 48 and 72 hours, cell proliferation, fatty acids incorporation into cell, peroxidation and activities of antioxidant enzymes were measured. Postaglandin E$_2$ (PGE$_2$) and thromboxane $A_2$ (TXA$_2$) were measured for the eicosanoids metabolism. There was no cell growth differences in both of LA and CLA treated MCF-7 cells at 48 hr incubation. Compared to LA, cell growth was decreased by CLA treatment according to increasing concentration at longer incubation times, respectively (p<0.05). Both of LA and CLA was incorporated into the cellular lipids 22~54% higher than in control but LA incorporation was not so linear as CLA according to concentration. Arachidonic acid (C20:4, $\omega$6) was synthesized after treatment of LA but did not in CLA, respectively. The lipid peroxide concentration in LA 120 $\mu$M group increased as 1.7 times as that in CLA 120 $\mu$M treated. The activities of antioxidant enzymes such as glutathione peroxidase and glutathione reductase were increased by the supplementation with CLA 120 $\mu$M at 72 hr incubation (p<0.001) compared to LA, otherwise activity of superoxide dismutase was not different in both. PGE$_2$ and TXA$_2$ levels were lower in condition of CLA treatments according to lower levels of arachidonic acids than those in LA treated group, respectively. Overall, the dietary CLA might change the MCF-7 cell growth by the changes of cell composition, production of lipid peroxide, activities of antioxidant enzymes and eicosanoid synthesis compared to dietary LA.

The Change of Antioxidant Enzyme (Superoxide Dismutase, Catalase, Glutathione Peroxidase) in the Endotoxin Infused Rat Lung (내독소 투여후 쥐의 폐조직내 Antioxidant (Superoxide Dismutase, Catalase, GSH-Peroxidase)의 변화에 대한 연구)

  • Song, Jeong-Sup;Kim, Chi-Hong;Kwon, Soon-Seog;Kim, Young-Kyoon;Kim, Kwan-Hyoung;Han, Ki-Don;Moon, Hwa-Sik;Park, Sung-Hak
    • Tuberculosis and Respiratory Diseases
    • /
    • v.40 no.2
    • /
    • pp.104-111
    • /
    • 1993
  • Background: Gram-negative bacterial endotoxin induced septicemia is known to be a leading cause in the development of adult respiratory distress syndrome(ARDS). The mechanism of endotoxin induced lung injury is mainly due to the activated neutrophils which injure the capillary endothelial cells by releasing oxidant radical and resulted in pulmonary edema. We studied the change of antioxidant enzyme in the case of large or small, intermittant dose of endotoxin infused rat lungs. Methods: Endotoxin was given to the rat through the peritoneal cavity in the dose of 7 mg/kg body weight in the large dose group and 1 mg/kg for 10 days in the small dose group. Bronchoalveolar lavage (BAL) was done and rats were killed at 6, 12, 24 hours after single endotoxin injection in the large dose group and 3, 7, 10 days after daily endotoxin injection for 10 days in the small dose group. The lungs were perfused with normal saline through the pulmonary artery to remove the blood and were homogenized in 5 volume of 50 mM potassium phosphate buffer containing 0.1 mM EDTA. After centrifuging at 100,000 g for 60 minute, the supernatent was removed and stored at $-70^{\circ}C$ until measuring for superoxide dismutase (SOD), catalase, glutathione peroxidase (GSH-Px) and protein. Results: We observed the following results. 1) The lung wet/dry weight ratio and albumin concentration in the BAL fluids were increased to peak at 12 hours and neutrophil number in the BAL fluids were peak at 6 hours after endotoxin injection in the large dose group. 2) Cu, Zn SOD (IU/mg protein) was significantly decreased after 6, 12 hours after endotoxin injection in the large dose group. 3) There were no singnificant change in the level of Mn SOD, catalase, GSH-Px after endotoxin injection in both groups. Conclusion: Endotoxin in the large dose group produced the acute pulmonary edema and decreased the Cu, Zn SOD in the lung tissue after injecting endotoxin at 6 and 12 hours. These phenomenon may be due to the cell membrane damage by endotoxin. Further research would be necessary whther giving SOD by intratracheal route or method to increase the synthesis of SOD may lessen the acute lung injury by endotoxin.

  • PDF

Comparative physiological and proteomic analysis of leaf in response to cadmium stress in sorghum

  • Roy, Swapan Kumar;Cho, Seong-Woo;Kwon, Soo Jeong;Kamal, Abu Hena Mostafa;Kim, Sang-Woo;Lee, Moon-Soon;Chung, Keun-Yook;Woo, Sun-Hee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.124-124
    • /
    • 2017
  • Cadmium (Cd) is of particular concern because of its widespread occurrence and high toxicity and may cause serious morpho-physiological and molecular abnormalities in in plants. The present study was performed to explore Cd-induced morpho-physiological alterations and their potentiality associated mechanisms in Sorghum bicolor leaves at the protein level. Ten-day-old sorghum seedlings were exposed to different concentrations (0, 100, and $150{\mu}M$) of $CdCl_2$, and different morpho-physiological responses were recorded. The effects of Cd exposure on protein expression patterns in S. bicolor were investigated using two-dimensional gel electrophoresis (2-DE) in samples derived from the leaves of both control and Cd-treated seedlings. The observed morphological changes revealed that the plants treated with Cd displayed dramatically altered shoot lengths, fresh weights, and relative water content. In addition, the concentration of Cd was markedly increased by treatment with Cd, and the amount of Cd taken up by the shoots was significantly and directly correlated with the applied level of Cd. Using the 2-DE method, a total of 33 differentially expressed protein spots were analyzed using MALDI-TOF/TOF MS. Of these, treatment with Cd resulted in significant increases in 15 proteins and decreases in 18 proteins. Significant changes were absorbed in the levels of proteins known to be involved in carbohydrate metabolism, transcriptional regulation, translation and stress responses. Proteomic results revealed that Cd stress had an inhibitory effect on carbon fixation, ATP production and the regulation of protein synthesis. In addition, the up-regulation of glutathione S-transferase and cytochrome P450 may play a significant role in Cd-related toxicity and stress responses. Our study provides insights into the integrated molecular mechanisms involved in response to Cd and the effects of Cd on the growth and physiological characteristics of sorghum seedlings. The upregulation of these stress-related genes may be candidates for further research and use in genetic manipulation of sorghum tolerance to Cd stress.

  • PDF

The Beneficial Effects of Ferulic Acid supplementation during In Vitro Maturation of Porcine Oocytes on Their Parthenogenetic Development

  • Lee, Kyung-Mi;Hyun, Sang-Hwan
    • Journal of Embryo Transfer
    • /
    • v.32 no.4
    • /
    • pp.257-265
    • /
    • 2017
  • Ferulic Acid (FA) is a metabolite of phenylalanine and tyrosine, a phenolic compound commonly found in fruits and vegetables. Several studies have shown that FA has various functions such as antioxidant effect, prevention of cell damage from irradiation, protection from cell damage caused by oxygen deficiency, anti-inflammatory action, anti-aging action, liver protective effect and anti-cancer action. In this study, we investigated the maturation rate, intracellular glutathione (GSH) and reactive oxygen species (ROS) of porcine oocytes by adding FA to the in vitro maturation (IVM) medium and examined subsequent embryonic developmental competence at 5% oxygen through parthenogenesis. There is no significant difference between the control group ($0{\mu}M$) and treatment groups ($5{\mu}M$, $10{\mu}M$, $20{\mu}M$) on maturation rates. Intracellular GSH levels in oocyte treated with $5{\mu}M$ of FA significantly increased (P < 0.05), and $20{\mu}M$ of FA revealed significant decrease (P < 0.05) in intracellular ROS levels compared with the control group. Oocytes treated with FA exhibited significantly higher cleavage rates (79.01% vs 89.19%, 92.20%, 90.89%, respectively) than the control group. Oocytes treated with $10{\mu}M$ showed significantly higher blastocyst formation rates (28.3% vs 40.3%, respectively) after PA than the control group. Total cell numbers in blastocyst of $10{\mu}M$ FA displayed significantly higher (39.4 vs 51.9, respectively) than the control group. In conclusion, these results suggested that treatment with FA during IVM improved the developmental potential of porcine embryos by increasing intracellular GSH synthesis and reducing ROS levels. Also, there was an improvement of cleavage rate, blastocyst formation and total cell numbers in blastocysts. It might be associated with Keap1-Nrf2 pathway as an antioxidant regulate pathway that plays a crucial role in determining the sensitivity of cells to oxidative damages by regulating the basal and inducible expression of enzymes which is related to detoxification and anti-oxidative effects, stress response enzymes and/or proteins and ABC transporters.

Effect of Diallyl Disulfide on Heme Oxygenase-1 Expression in Human Hepatoma Cell Line HepG2 (인간 간암세포주 HepG2에서 heme oxygenase-1 발현에 대한 diallyl disulfide의 효과)

  • Kim, Kang-Mi;Lee, Sang-Kwon;Park, Young-Chul
    • Journal of Life Science
    • /
    • v.21 no.7
    • /
    • pp.1046-1051
    • /
    • 2011
  • Diallyl disulfide (DADS), the most prevalent oil-soluble organosulfur compound in garlic, is known to have diverse biological activities, including anticarcinogenic, antiatherosclerotic, antiinflammatory, and antioxidant actions. In this study, we investigated the effect of DADS on the expression of heme oxygenase-1 (HO-1) in human liver hepatoma cell line HepG2. Treatment of HepG2 cells by DADS evoked a dose-dependent growth inhibition without significant toxicity to the cells, and also induced the expression of transcription factor Nrf2. However, DADS did not have any enhancing effect on transcription and translation of HO-1 expression in HepG2 cells. In addition, DADS efficiently blocked protein synthesis of HO-1 in HepG2 cells stimulated by CoPP or hemin. But, DADS did not decrease the content of transcripts of HO-1 gene stimulated by CoPP, with accumulation of Nrf2 and small Maf in the nucleus. Based on these results, we conclude that DADS inhibits HO-1 expression by modulation of translational level of CoPP or hemin-induced HO-1 expression in HepG2 cells.

A mixture of blackberry leaf and fruit extracts decreases fat deposition in HepG2 cells, modifying the gut microbiome

  • Wu, Xuangao;Jin, Bo Ram;Yang, Hye Jeong;Kim, Min Jung;Park, Sunmin
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.3
    • /
    • pp.229-237
    • /
    • 2019
  • More effective treatments are needed for non-alcoholic fatty liver disease (NAFLD). We hypothesized that water extracts of blackberry fruits (BF) and leaves (BL) and their combinations (BFL) reduce fat deposition in HepG2 cells and modulate shor-tchain fatty acids (SCFA) and fecal bacteria in vitro. HepG2 cells were treated with BF, BL, BFL1:2, and BFL1:3 for 1 h, and 0.5 mM palmitate was added to the cells. Moreover, low ($30{\mu}g/mL$) and high doses ($90{\mu}g/mL$) of BL and BF were applied to fecal bacteria in vitro, and SCFA was measured by GC. BL, BF, BFL1:2, and BFL1:3 reduced triglyceride deposition in the cells in a dose-dependent manner, and BFL1:2 and BFL1:3 had a stronger effect than BF. The content of malondialdehyde, an index of oxidative stress, was also reduced in BL, BF, and BFL1:2 with increasing superoxide dismutase and glutathione peroxidase activities. The mRNA expression of acetyl CoA carboxylase, fatty acid synthase, and sterol regulatory element-binding protein-1c was reduced in BL, BF, BFL1:2, and BFL1:3 compared to the control, and BFL1:2 had the strongest effect. By contrast, the carnitine palmitolytransferase-1expression, a regulator of fatty acid oxidation, increased mostly in BFL1:2 and BFL1:3. Tumor necrosis factor-${\alpha}$ and interleukin-$1{\beta}$ expression was reduced in BL compared to that in BF and BFL1:2 in HepG2 cells. Interestingly, BL increased propionate production, and BF increased butyrate and propionate production and increased total SCFA content in fecal incubation. BF increased the contents of Bifidobacteriales and Lactobacillales and decreased those of Clostridiales, whereas BL elevated the contents of Bacteroidales and decreased those of Enterobacteriales. In conclusion, BFL1:2 and BFL1:3 may be potential therapeutic candidates for NAFLD.