• 제목/요약/키워드: Glutathione Sulfhydryl

검색결과 30건 처리시간 0.021초

Dantrolene Sodium이 간 조직내 Sulfhydryl Group과 Glutathione에 미치는 영향 (Effect of Dantrolene Sodium on Tissue Sulfhydryl Groups and Glutathione in Rats)

  • 김광국;백광세;강복순
    • The Korean Journal of Physiology
    • /
    • 제19권2호
    • /
    • pp.155-160
    • /
    • 1985
  • Dantrolene sodium(DS) is a long acting skeletal muscle relaxant which has been successfully used to control muscle spasticity in patients with various neurological disorders. However, its use is associated with hepatotoxicity. Tissue sulfhydryl group has many important roles for cellular integration and glutathione serves as a substrate for the detoxification metabolism. The purpose of this study were to investigate the effect of DS on tissue sulfhydrl group and glutathione content. Foully albino rats were divided into two groups ; saline treated (control) and DS treated groups. DS dissolved in saline was administered orally. All rats were sacrificed after 7. 14. 21 and 28 days of DS ana saline treatment by dacapitation ana liver was removed for the enzyme preparation. Total and nonprotein sulfhydryl were measured by the method of Sedlak and Lindsay (1968). Total glutathione content was assayed according to the method described by Tietze (1969) and glutathione reductase was assayed according to the method of Racker (1955), The results obtained are summarized as follows : DS administration significantly depressed the total, protein and nonprotein sulfhydryl content in liver. There were significant reduction of both total glutathione content and glutathione reductase activity in liver. On the basis of the above results it may be speculated that the toxicity of DS are well correlated with tissue sulfhydryl content and glutathione reductase activity.

  • PDF

S-Nitrosylation of Sulfhydryl Groups in Albumin by Nitrosating Agents

  • Park, Jeen-Woo
    • Archives of Pharmacal Research
    • /
    • 제16권1호
    • /
    • pp.1-5
    • /
    • 1993
  • The reaction of sulfhydryl groups in human serum ablumin with bacteriostatic and hypotensive notrosating agents such as sodium nitorprusside and sodium nitrite has been examined. The low reactivity of sodium nitroprusside to sulfhydral groups in albumin has been observed and the sterical inaccessilibility of the agent site which sulfhydryl group resides was implicated. The reaction of sodium nitrite with albumin was highly influenced by pH and little reactivity was observed at physiological pH. On the other hand, the reaction between albumin and S-nitrosoglutatione, an intermediate induced from the reaction of glutathione and nitrosating agents, resulted in the rapid decrease of free sulfhydryl groups in albumin. S-Nitrosylation of the sulfhydryl group by S-nitrosoglutathione and the subsequent production of mixed disulfide is the probable route of modification. In the physiological system, S-nitroso-glutathione may act as an active intermediate in expressing reacivity of nitrosating agents to sulfhydryl groups in albumin.

  • PDF

Sulfhydryl기와 세포막 구성성분의 대사 변화에 따른 다형핵 백혈구 기능의 변경 (Alteration of PMN Leukocyte Function by the Change of Sulfhydryl Group and Metabolism of Membrane Components)

  • 신재훈;이정수;한은숙;신용규;이광수
    • 대한약리학회지
    • /
    • 제25권1호
    • /
    • pp.75-85
    • /
    • 1989
  • 면역 보체가 결합되어 있는 zymosan에 의하여 활성화된 다형핵 백혈구에서 세포 투과성 물질인 N-ethylmaleiamide과 $Hg^{++}$은 superoxide 라디칼 생성, NADPH oxidase 활성도 및 lysosomal enzyme (lactic dehydrogenase, ${\beta}-glucuronidase$)의 유리를 억제하였다. 세포막 단백에 특이적인 p-chloromercuribenzoic acid와 p-chloromercuribenzenesulfonic acid는 superoxide 라디칼 생성에 영향을 주지 않았으나 NADPH oxidase 활성도와 lysosomal enzyme의 유리를 억제하였다. 식작용 중에 세포막과 세포내의 sulfhydryl기는 반응시간에 따라 점진적으로 감소하였다. N-ethylmaleiamide와 $Hg^{++}$은 세포막과 세포내의 sulfhydryl기를 모두 감소시켰다. P-Chloromercuribenzoic acid와 p-chloromercuribenzenesulfonic acid는 세포막의 sulfhydryl기를 유의하게 감소시켰으나 세포내 용해성 sulfhydryl기에는 영향을 주지않았다. Cysteine과 mercaptopropionylglycine는 superoxide 라디칼의 생성과 lysosomal enzyme의 유리를 억제하였다. Gluthathione은 superoxide생성에 영향을 주지 않았으나 뚜렷하게 lactic dehydrogenase의 유리를 억제하였다. N-ethylmaleiamide에 의한 superoxide 생성의 억제는 cysteine과 mercaptopropionyl-glycine에 의하여 반전되었으나 gluthathione의 영향은 없었다. N-ethylamleiamide에 의한 NADPH oxidase의 비활성화는 gluthathione, cysteine과 mercaptopropionylglycine에 의하여 저해되었다. Carbachol에 의하여 항진된 superoxide 라디칼 생성은 N-ethylamleiamide에 의하여 완전히 억제되었고, atropine에 의하여 길항되었다. 그러므로, 외부 자극에 대한 다형핵 백혈구 반응의 표현은 sulfhydryl기의 양의 변화와 연관이 있을 것으로 시사되었다. Lysosomal enzyme 유리는 세포막과 세포내의 sulfhydryl기에 의하여, 이에 반하여 superoxide생성은 세포내 sulfhydryl기에 의해서 영향받을 것으로 추정되었다.

  • PDF

Effects of Ginseng Saponins on Morphine 6-Dehydrogenase

  • 김학성;정인숙;이명구;오기완
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1994년도 춘계학술대회 and 제3회 신약개발 연구발표회
    • /
    • pp.304-304
    • /
    • 1994
  • The possible mechanisms of ginseng saponins on the inhibition of development of morphine tolerance and physical dependence were investigated in the aspects of morphine metabolism by morphine 6-dehydrogenase. Administration of morphine causes a reduction of non-protein sulfhydryl contents in liver, because morphinone is metabolized from morphine by morphine 6-dehydrogenase conjugates with sulfhydryl compounds. However, ginseng saponins inhibited the activity of morphine 6-dehydrogenase which catalized the production of morphinone from morphine. In addition, ginseng' saponins inhibited the reduction of non-protein sulfhydryl levels by Increasing the level of hepatic glutathione. These results suggest that the dual action of the above plays an important role in the inhibition of development of morphine tolerance and physical dependence. On the other hand, it was observed that less polar components of ginseng saponins with parent structures were more active components in vitro.

  • PDF

Effects of Ginseng Saponins on Morphine 6-Dehydrogenase

  • Kim, Hack-Seang;Jeong, In-Sook
    • 생약학회지
    • /
    • 제25권2호
    • /
    • pp.160-166
    • /
    • 1994
  • The possible mechanisms of ginseng saponins on the inhibition of the development of morphine tolerance and physical dependence were investigated in the aspects of morphine metabolism by morphine 6-dehydrogenase. The administration of morphine causes a reduction of non-protein sulfhydryl contents in the liver, because morphinone metabolized from morphine by morphine 6-dehydrogenase conjugates with sulfhydryl compounds. However, ginseng saponins inhibited the activity of morphine 6-dehydrogenase which catalyzed the production of morphinone from morphine. In addition, ginseng saponins inhibited the reduction of non-protein sulfhydryl levels by increasing the level of hepatic glutathione. These results suggest that the dual action of the above plays an important role in the inhibition of the development of morphine tolerance and physical dependence. On the other hand, it was observed that less polar components of ginseng saponins with parent structures were more active components in vitro.

  • PDF

Copper-Phenanthroline 복합체에 의해 유도되는 DNA 손상에 대한 양파와 마늘의 억제효과 (The Effects of Onion and Garlic on Copper-Phenanthroline Complex Induced DNA Degradation)

  • 박평심;이명렬
    • 한국식품영양과학회지
    • /
    • 제21권4호
    • /
    • pp.367-371
    • /
    • 1992
  • 양파와 마늘이 산화적 DNA 손상에 미치는 영향을 시험관내에서 $Cu^{2+}$와 phenanthroline에 의해 유리된 TBA반응물을 측정하여 관찰한 결과 양파가 마늘보다 더 강한 TBA반응물 억제효과를 나타냈으며, 양파의 효과는 시료를 가열하여도 변화가 적엇다. 항산화효소인 SOD활성은 마늘에서, catalase와 glutathione peroxidase 활성도는 양파에서 더 높았고, -SH 기는 마늘에서 더 많았다. $Cu^{2+}$와 phenanthroline에 의한 산화적 DNA 손상에 대해 SOD와 catalase는 영향이 적고, glutathione은 영향이 비교적 큰것으로 나타나 양파의 마늘보다 더 큰 DNA손상 억제효과는 항산화 효소나, -SH 기에 의한것이 아니며, 특히 양파에 열을 가해도 DNA손상 억제 효과의 감소가 적은점으로 보아 비교적 고온에서 안정된 물질이 $Cu^{2+}$와 phenanthroline에 의한 DNA손상 억제효과를 나타내는 것으로 사료된다.

  • PDF

Sulfhydryl-Related and Phenylpropanoid-Synthesizing Enzymes in Arabidopsis thaliana Leaves after Treatments with Hydrogen Peroxide, Heavy Metals, and Glyphosate

  • Park, Keum-Nam;Sa, Jae-Hoon;Lim, Chang-Jin
    • BMB Reports
    • /
    • 제32권2호
    • /
    • pp.203-209
    • /
    • 1999
  • Three-week grown Arabidopsis thaliana leaves were wounded by cutting whole leaves with a razor blade into pieces (about$3\;mm\;{\times}\;3\;mm$) submerged in various solutions, and incubated in a growth chamber for 24 h. We measured and compared activities of several enzymes such as phenylalanine ammonia-lyase (PAL), tyrosine ammonia-lyase (TAL), thioredoxin, thioredoxin reductase, thioltransferase, glutathione reductase, and $NADP^+$ -malate dehydrogenase. PAL activity was decreased in $HgCl_2$-, $CdCl_2$-, and glyphosate-treated leaf slices, and could not be detected after treatment with $CdCl_2$. TAL activity was found to be maximal in the $CdCl_2$-treated leaf slices. Activity of thioredoxin, a small protein known as a cofactor of ribonucleotide reductase and a regulator of photosynthesis, was significantly increased in the $CdCl_2$-treated leaf slices, while thioredoxin reductase activity was maximal in the $HgCl_2$-treated leaf slices. Thioltransferase and glutathione reductase activities were significantly decreased in the $HgCl_2$-treated leaf slices. $NADP^+$ -malate dehydrogenase activity remained relatively constant after the chemical treatments. Our results strongly indicate that sulfhydryl-related and phenylpropanoid-synthesizing enzyme activities are affected by chemical treatments such as hydrogen peroxide, heavy metals, and glyphosate.

  • PDF

Effects of Feeding Lactobacillus spp. on the Level of Cell Glutathione Sulphydryl and Immunoglobulin M in ICR Mice

  • Byun, J.R.;Baik, Y.J.;Yoon, Y.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제17권3호
    • /
    • pp.415-419
    • /
    • 2004
  • Effects of feeding seven strains of Lactobacillus spp. on the level of cell glutathione sulphydryl (GSH) in spleen, liver and erythrocyte of the ICR mice and on the level of immunoglobulin M in the spleen were determined. The level of cell glutathione sulphydryl in the spleen was dependent on the strain of Lactobacilli, it was significantly higher in the mice fed with L. casei CU 001, L. rhamnosus CU 02, L. acidophilus NCFM and L. casei YIT9018 (p>0.05). The level of cell glutathione sulphydryl in the liver increased in the mice fed with L. casei YIT9018, L. acidophilus NCFM, L. casei CU 001 (p>0.05), the level of glutathione sulphydryl of the erythrocyte showed significantly higher value than control mice when fed with L. acidophilus NCFM, L. casei YIT9018, L. casei CU 001 (p>0.05). The level of immunoglobulin M in the spleen of ICR mice expressed as the plaque count revealed significantly higher value than the control mice when fed with L. casei CU 001, L. acidophilus NCFM and L.casei YIT 9018.

비타민 C와 글루타치온이 수은유도 ROS 생성에 미치는 영향 (Effect of Vitamin C and GSH on the Hg Induced ROS)

  • 권경진;신윤용
    • Environmental Analysis Health and Toxicology
    • /
    • 제23권1호
    • /
    • pp.33-39
    • /
    • 2008
  • The genotoxicity of mercury compounds have been investigated with a variety of genetic endpoints in prokaryotic and eukaryotic cells. The mercury ions are positively charged and easily form complexes with DNA by binding with negatively charged centers to cause mutagenesis. Further, the mercury ions can react with sulfhydryl (-SH) groups of proteins associated with DNA replication and alter genetic information. Another mechanism by which mercury damages DNA molecule is via its probable involvement of reactive oxygen species (ROS) and induces DNA strand breaks. In order to investigate whether the ROS production was induced by mercury, we performed ROS assay. As the result, the ROS production was significantly increased when it grows dose-dependently and time-dependently. We compared mercury alone-treated group and mercury co-treated with Vitamin C or glutathione group. As the result, the ROS production induced by mercury was decreased by Vitamin C and glutathione. Co-treated with Vitamin C and glutathione group was the most effective to lowering ROS production induced by mercury.

Activities of Sulfhydryl-Related and Phenylpropanoid-Synthesizing Enzymes during Leaf Development of Arabidopsis thaliana

  • Sa, Jae-Hoon;Park, Eun-Hee;Lim, Chang-Jin
    • BMB Reports
    • /
    • 제31권6호
    • /
    • pp.554-559
    • /
    • 1998
  • Activities of glutathione- and thioredoxin-related enzymes and phenylpropanoid-synthesizing enzymes were measured and compared in the developing leaves of Arabidopsis thaliana. Phenylalanine ammonia-lyase activity is maximal in the leaves of 2-wk-grown Arabidopsis. Tyrosine ammonia-lyase activity is maximal in the leaves of 3-wk-grown and 4-wk-grown Arabidopsis. Activity of thioitransferase, an enzyme involved in the reduction of various disulfide compounds, is higher in younger leaves than in older ones. A similar pattern was obtained in the activity of thioredoxin, a small protein known as a cofactor of ribonucleotide reductase and a regulator of photosynthesis. Activity of glutathione reductase is also higher in the younger leaves. Malate debydrogenase activity remains relatively constant during the development of Arabidopsis leaves. The results offer preliminary information for further approach to elucidate the mechanism of growth-dependent variations of these enzymes.

  • PDF