• Title/Summary/Keyword: Glutathione S-transferase M1

Search Result 157, Processing Time 0.037 seconds

Tolerance Mechanism to Simazine in Coix lacryma-jobi (율무(Coix lacryma-jobi)의 제초제 Simazine에 대한 내성기구)

  • Ma, Sang-Yong;Kim, Jong-Seok;Chun, Jae-Chul
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.1
    • /
    • pp.37-43
    • /
    • 1997
  • Tolerance mechanism to simazine (6-chloro-N,N'-diethyl-1,3,5-triazine-2,4-diamine) in Coix lacryma-jobi was investigated with respect to herbicide detoxification via glutathione conjugation. Simazine was initially absorbed by seedlings of C. lacryma-jobi and corn, but after 12 hours of treatment, no significant difference in simazine absorption was found in both species. Simazine absorbed was rapidly metabolized to glutathione-simazine conjugate. One to six hours after treatment, metabolism was approximately 2-fold faster in C. lacryma-jobi than in corn. Glutathione content was found 1.5- and 2.3-fold higher in coleoptile and root of C. lacryma-jobi, respectively, compared with corn. In both species, the highest concentration of glutathione was found in coleoptile tissue. Glutathione S-transferase that exhibits activity with 1-chloro-2,4-dinitrobenzene was not significantly different between two species. However, glutathione S-transferase activity with simazine was approximately 2-fold greater in C. lacryma-jobi than in corn. The glutathione S-transferase activity was 20 to 30% greater in shoot of either species than in root. Fast protein liquid chromatography-anion exchange column was used to separate glutathione S-transferase isozymes in coleoptiles of C. lacryma-jobi and corn. A peak of glutathione S-transferase activity with 1-chloro-2,4-dinitrobenzene and two peaks of glutathione S-transferase activity with simazine from C. lacryma-jobi were coeluted with those from corn, but showed greater activity than in the case of corn. Another glutathione S-transferase isozyme that exhibits activity with simazine was detected in the elution of C. lacryma-jobi extract, but not in corn. Electron transport in chloroplast thylakoids isolated from leaves of both species was equally sensitive to simazine applied at 1 to 100 nM. These results indicate that the simazine tolerance in C. lacryma-jobi is due to its capacity to detoxify the herbicide via glutathione conjugation, which is positively correlated with the level of glutathione content and glutathione S-transferase activity.

  • PDF

A Study of Effects of Coffee Waste Extracts obtained from Solvents (커피 폐기물 추출물의 효능에 관한 연구)

  • Lee, Kwang-Soo;Park, Kyung-Sook
    • The Korean Journal of Food And Nutrition
    • /
    • v.28 no.5
    • /
    • pp.866-870
    • /
    • 2015
  • In this study, coffee waste was extracted with different solvents such as ethyl acetate, methylene chloride and methanol to investigate the total polyphenol contents, electron donating ability and the inhibitory effect on glutathione S-transferase. The total polyphenol contents were $3,060.61{\pm}357.12{\mu}g\;GAE/mL$ in ethyl acetate, $909.09{\pm}35.71{\mu}g\;GAE/mL$ in methylene chloride, and $1,602.27{\pm}30.36{\mu}g\;GAE/mL$ in methanol. The total polyphenol contents showed a significant difference (p<0.05) between the solvents. The electron donating ability was $80.20{\pm}1.45%$ for ethyl acetate, $81.94{\pm}0.45%$ for methylene chloride, and $85.14{\pm}1.53%$ for methanol. The electron donating abilities were significantly different (p<0.05) between the solvents. The inhibitory effect of the various extracts on glutathione S-transferase (% inhibition) was $92.12{\pm}0.56%$, $88.48{\pm}0245%$ with methylene chloride extract, and $90.85{\pm}0.14%$ with methanol extract. These too were significant different (p<0.05) between the solvents. The two portions of coffee waste extracts obtained from ethyl acetate and methanol showed meaningful results on the total polyphenol contents, and the inhibition effects on glutathione S-transferase. Therefore, they can be utilized to develop health care foods and can be applied as antioxidants for cosmeceuticals.

Inductoin of Radioresistance by Overexpression of Glutathione S-Transferase K1 (hGSTK1) in MCF-7 Cells (MCF-7 세포주에서 Glutathione S-Transferase K1 (hGSTK1) 과발현에 의한 방사선 내성의 유도)

  • Kim, Jae-Chul;Shin, Sei-One
    • Radiation Oncology Journal
    • /
    • v.19 no.4
    • /
    • pp.381-388
    • /
    • 2001
  • Purpose : This study was conducted to assess the effects of x-irradiation on the expression of the novel glutathione S-transferase K1 gene. Materials and methods : Human glutathione S-transferase K1 (hGSTK1) DNA was purified and ligated to a pcDNA3.1/Myc-His(+) vector for the overexpression of hGSTK1 gene. MCF-7 cells were transfected with or without the recombinant hGSTK1 gene, and irradiated with 6 MV x-ray. After incubation of 14 days, cell survival was measured and compared. The expression of hGSTK1 and the effect of x-irradiation on hGSTK1 expression were also estimated in MCF-7 cells transfected with or without the hGSTK1 gene by RT-PCR. Results : Following 2 to 12 Gy of x-irradiation, the cell survivals were higher in the MCF-7 cells transfected with the hGSTK1 gene than in those without transfection. Despite the higher cell survival in the hGSTK1-transfected cells, RT-PCR for hGSTK1 mRNA revealed no significant differences according to radiation dose, fractionation, and time after irradiation. Conclusion : The MCF-7 cells transfected with the hGSTK1 gene showed higher cell survival than those without transfection of the gene. The hGSTK1 gene might be associated with the radiosensitivity of MCF-7 cell line and further analysis should be needed.

  • PDF

Crystallization of 28 kDa Clonochis sinesis Glutathione S-transferase

  • Kim, Young-Kwan;Chung, Yong-Je
    • Korean Journal of Crystallography
    • /
    • v.14 no.1
    • /
    • pp.32-34
    • /
    • 2003
  • A helminth glutathione S-transferase. 28 kDa isozyme from Clonorchis sinensis has been crystallized under several conditions. One of the crystals, grown from a 10% polyehtylene glycol MME 550 (PEG MME 5 K) solution in 0.05 M potassium phosphate buffer (pH 7.0), diffracts to $3.0{\AA}$ resolution, and belongs to monoclinic space group C2, with unit cell parameters $a=95.83{\AA}$, $b=63.82{\AA}$, $c=235.09{\AA}$, and ${\beta}=97.2^{\circ}$.

Association between the Polymorphism of Glutathione S-transferase Genes and Chronic Myeloid Leukemia in Asian Population: a Meta-analysis (아시아인종에서 만성골수성백혈병과 Glutathione S-transferase 유전자 다형성의 메타분석)

  • Kim, Hee Sung
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.10
    • /
    • pp.289-299
    • /
    • 2017
  • To verify the association between susceptibility to chronic myeloid leukemia (CML) and GSTM1, GSTT1 gene polymorphisms in Asian populations, 9 papers published until July 2017 were cited in a meta-analysis. The null present types of the GSTM1, GSTT1 gene were analyzed individually. The significant association was found between CML and GST polymorphism (GSTM1; OR=1.306, 95% CI=1.091-1.563, p=0.004, GSTT1; OR=1.987, 95% CI=1.438-2.746, p=0.000). In addition, there was association between CML and the null type of the combination GSTM1-GSTT1 polymorphisms (OR=4.191, 95% CI=2.833-6.201, p=0.000). Thus, genetic polymorphisms of the GSTM1, GSTT1 and combination GSTM1-GSTT1 polymorphism in Asian populations may be risk factors for CML.

Overexpression of Cotton Glutathione S-Transferase (GST) cDNA and Increase of low Temperature and Salt Tolerance in Plants

  • Kang, Won-Hee;Jong Hwa kim;Lim, Jung-Dae;Yu, Chang-Yeon
    • Journal of Plant Biotechnology
    • /
    • v.4 no.3
    • /
    • pp.117-122
    • /
    • 2002
  • Cotton Glutathione S-Transferase(GST: EC 2.5.1.18) was cloned and Gh-5 cDNA was overexpressed in tobacco (Nicotiana tabacum) plants. The transformation of cotton GST in tobacco plant was confirmed by northern blot analysis. Type I and Type II transcript patterns were identified in Gh-5 transgenic tobacco plants. Type I transcripts was only discussed in this paper. Glutathione and 1-chloro-2,4-dinitrobenzene (CDNB) were used as the substrates, and the activity of GST in the type I transgenic plants was about 2.5-fold higher than the non-expressers and wild type tobacco plants. The expression of cotton GST in tobacco plants proved that Gh-5 could be translated into functional protein. Type I transgenic plants produced functional GST in the cells. Type I showed higher GST specific activity than Type II in the transgenic plants. Control and transgenic seedlings were grown in the growth chamber and under the light at 15$^{\circ}C$, and the effects of cotton GST in the seedlings was evaluated. The growth rate of Gh-5 overexpressors was better than the control and non-transgenic tobacco plants. Salinity tolerance was also analyzed on the seeds of transgenic plants. Seeds of Gh-5 overexpressors and the wild type tobacco seedlings were germinated and grown at 0, 50, 100, 150, and 200 mM NaCl solution. Gh-5 transgenic seedlings showed higher growth rate over control seedlings at both 50 and 100 mM NaCl solution. But at 0, 150, and 200 mM NaCl concentration, the difference in growth rate was not detected.

Glutathione-S-transferase Activity and its Changes to Chemical Pollution in Edible Shells and Fishes (식용 어패류 조직중의 glutathione S-transferase 활성과 화학물질 오염에 의한 변화)

  • Song, Mi-Ran;Choe, Sun-Nam;Park, Kwan-Ha
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.206-212
    • /
    • 1998
  • This study was undertaken to explore the applicability of glutathione S-transferase (GST) activity as a predictable indicator to monitor chemical pollution in shells and fishes utilized for food. There were some variations in the basal level of GST activity depending on species tested. Ark shells, Anadara satowi, showed the highest normal enzyme activity, followed by catfish and marine mussels, Mytilus coruscus. White clams, Meretrix lusoria, Israeli carp and catfish had lower activity. When A. satowi was exposed to 3-methyl-cholanthrene (3-MC), a prototypic polycyclic aromatic hydrocarbon for 1 week, GST activity decreased by about 30%. This reduction in GST activity induced by 3-MC did not recover until two weeks after the cessation of exposure. GST activity increased in response to 3-MC in most of the other species studied. The GST elevation in M. coruscus attained its maxinum of about 200% at the termination of 3-MC exposure maintaining this level up to 2 weeks, and declined gradually thereafter. 3-MC also induced GST activity in lsraeli carp in a similar fashion to M. coruscus. Phenobarbital induced GST activity both in M. coruscus and lsraeil carp. Other chemicals. such as clofibrate, butylated hydroxyanisole. hexachlorobenzene, and oxolinic acid did not change the enzyme activity significantly in most speciel. Phenol depressed GST activity only in lsraeli carp. These results suggest that the basal level of GST activity is somewhat variable and that the direction of change in response to chemicals seems to be related to its normal activity. The change in enzyme activity can be a preditable indicator of some environmental chemicals such as PAHs and phenol.

  • PDF

Preliminary X-ray Studies of a New Crystal form of 28 kDa Clonorchis sinensis Glutathione S-Transferase

  • Cho, Youn-Hye;Kim, Young-Kwan;Kim, Seung-Joon;Hong, Seong-Jong;Chung, Yong-Je
    • Korean Journal of Crystallography
    • /
    • v.16 no.2
    • /
    • pp.138-140
    • /
    • 2005
  • A new crystal of helminth glutathione S-transferase, 28 kDa isozyme from Clonorchis sinensis has been grown from a 20% PEG MME 550 solution containing 50 mM $CaCl_{2}$ in 0.1 M bis-Tris buffer (pH 6.5) in $2{\sim}3$ days. The crystals diffract to $3.0{\AA}$ resolution and belong to the orthorhombic space group $P2_{1}2_{1}2_{1}$ with cell parameters $a=62.58{\AA},\;b=69.92{\AA},\;and\;c=339.67{\AA}$.

GENETIC POLYMORPHISMS OF THE GLUTATHIONE S-TRANSFERASE AND CYP1A1 GENES IN KOREAN ORAL SQUAMOUS CELL CARCINOMA (한국인 구강 편평세포암에서 Glutathione S-transferase와 CYP1A1 유전자의 다형성)

  • Cha, In-Ho;Kwon, Jong-Jin;Park, Kwang-Kyun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.28 no.5
    • /
    • pp.364-371
    • /
    • 2002
  • Many chemical compopunds are converted into reactive electrophilic metabolites by the oxidative(Phase I) enzymes, which are mainly cytochrome P-450 enzyme(CYPs). Phase II conjugating enzymes, such as glutathione S-transferase(GST), usually act as inactivation of enzymes. Genetic polymorphisms have been found to be associated with increased susceptibility to cancer of the lung, bladder, breast and colorectal. Many of the polymorphic genes of carcinogen metabolism show considerably different type of cancer among different ethnic groups as well as individuals within the same group. The aim of this study is (1) to establish the frequencies of genetic polymorphisms of GSTM1 and CYP1A1 in Korean oral squamous cell carcinoma(SCC), (2) to associate oral SCC with the risk of these genetic polymorphisms. The genetic polymorphisms of the GSTM1 and the CYP1A1 genes among 50 Korean oral SCC were analyzed using polymerase chain reaction(PCR). The results suggest that the homozygote and the mutant type of CYP1A1 MspI polymorphisms may be associated with genetic susceptibility to oral SCC in Korean. A combination of the GSTM1 null type with the homozygote(m1/m1), and the mutant(m2/m2) type of CYP1A1 MspI polymorphisms showed a relatively high risk of oral SCC in Korean. In the smoking group, the GSTM1 wild genotype may be the high risk factor of oral SCC in Korean. These data coincide with the hypothesis which states that different susceptibility to cancer of genetic polymorphisms exist among different ethnic group and different types of human cancer.