• Title/Summary/Keyword: Glutathione S transferase

Search Result 852, Processing Time 0.021 seconds

Increase of Salt and Low Temperature Tolerance by Overexpressing Glutathione S-Transferase (GST) Gene (염분과 저온에 대한 내성증진을 위한 GST 유전자의 과발현)

  • Jun Chol Kim;Il Seop Kim;Won Hee Kang
    • Journal of Bio-Environment Control
    • /
    • v.11 no.3
    • /
    • pp.139-143
    • /
    • 2002
  • Cotton Glutathione S-Transferase (GST: EC 2.5.1.18) was cloned and overexpressed in tobacco (Nicotiana tabacum) plants. Northern blot analysis confirmed the successful transformation of cotton gst gene in tobacco plant. Type I and Type ll transcript patterns were identified in transgenic tobacco plants and only Type I transcripts were discussed in this paper, The activity of GST in the type II transgenic plants was about 1.5-fold higher than those of the wild type and non-expresser by using 1-chloro-2,4-dinitrobenzene (CDNB) and reduced glutathione as the substrate. The expression of cotton GST in tobacco plants proved that Gh-5 could be translated into functional protein. Type II transgenic plants produced functional GST in the cells. The effects of cotton GST in the seedlings was evaluated by growing the control and transgenic seedlings at $15^{\circ}C$ in the growth chamber in the light. Overexpressors were grown well compared to the control plants (non-expressors). lo test far tolerance to salinity, seeds of Gh-5 overexpressors and the wild type Xanthi seedlings were grown at 0, 50, 100, 150, and 200 mM NaCl solution. Gh-5 transgenic seedlings showed higher growth rate over control seedlings on 50 and 100 mM NaCl solution. There was no difference in growth rate at 150 and 200mM NaCl concentration.

Transcriptional Regulation of the Schizosaccharomyces pombe Gene Encoding Glutathione S-Transferase I by a Transcription Factor Pap1

  • Kim Hong-Gyum;Kim Byung-Chul;Kim Kyunghoon;Park Eun-Hee;Lim Chang-Jin
    • Journal of Microbiology
    • /
    • v.42 no.4
    • /
    • pp.353-356
    • /
    • 2004
  • In a previous study, a gst gene was isolated from the fission yeast Schizosaccharomyces pombe. This gene was dubbed gstI, and was characterized using the gstI -lacZ fusion plasmid pYSH2000. In this work, four additional fusion plasmids, pYSHSDl, pYSHSD2, pYSHSD3 and pYSHSD4, were constructed, in order to carry (respectively) 770, 551, 358 and 151 bp upstream regions from the translational initiation point. The sequence responsible for induction by aluminum, mercury and hydrogen peroxide was located in the range between -1,088 and -770 bp upstream of the S. pombe gstI gene. The same region was identified to contain the nucleotide sequence responsible for regulation by Papl, and has one puta­tive Papl binding site, TTACGTAT, located in the range between $-954\~-947$ bp upstream of the gstI gene. Negatively acting sequences are located between -1,088 and -151 bp. These findings imply that the Papl protein is involved in basal and inducible transcription of the gstI gene in the fission yeast S. pombe.

Effects of Youngkaechulgamtang on Hepatotoxicity (영계출감탕의 간독성에 미치는 영향)

  • Kim, Tae-Hee;Yang, Ki-Sook;Park, Seung-Ah
    • Korean Journal of Pharmacognosy
    • /
    • v.30 no.1
    • /
    • pp.12-17
    • /
    • 1999
  • The youngkaechulgamtang (Y) composed of four herb drugs, including Hoelen (H). Cinnamomi Ramulus (C). Atractylodis Rhizoma Alba (A) and Glycyrrhizae Radix (G). In oriental medicine literatures, Youngkaechulgamtang is described to be effective in headache, inflammation, uremia, gastritis, diarrhea and hypertension. To estimate the clinical effectiveness of Youngkaechulgamtang, several pharmacological experiments were carried out. The results are summerized as follows; On acetaminophen-induced hepatotoxicity, C+A, Y-G, Y-H, MIX and Y showed the significant elevation of glutathione-S-transferase. But, C+A, Y-G, Y-H, MIX and Y showed the significant suppression of serum aminotransferases. On ANIT-induced cholestasis, U (Ursodesoxycholic acid 50 mg/kg)+$Y_l$ (760 mg/kg) showed the significant increase of bile juice volume. $Y_l,\;Y_2$ (1520 mg/kg), U, $U+Y_l$ showed the remarkable increase of cholic acid. U and $U+Y_l$ showed the significant decrease of total bilirubin. From these results, it is suggest that Y shows liver protective effect against various hepatic injury. Especially, Youngkaechulgamtang was more effective than mixture of 4 ingredients in the elevation of glutathione-S-transferase in acetaminophen-induced hepatotoxicity.

  • PDF

Differential Effects of Indole, Indole-3-carbinol and Benzofuran on Several Microsomal and Cytosolic Enzyme Activities in Mouse Liver (Indole, Indole-3-calbinol 및 Benzofuran이 간장 microsome과 cytosol의 약물대사 효소 활성도에 미치는 영향)

  • Cha, Young-Nam;Thompson, David C.;Heine, Henry S.;Chung, Jin-Ho
    • The Korean Journal of Pharmacology
    • /
    • v.21 no.1
    • /
    • pp.1-11
    • /
    • 1985
  • The effects of feeding indole, indole-3-carbinol and benzofuran (all at 5 mmole/kg body wt./day) on various hepatic microsomal and cytosolic enzyme activities involved in xenobiotic metabolism have been compared. Benzofuran was found to elevate the activities of many enzymes both in microsomes (e.g., aniline hydroxylase, 7-ethoxycoumarin O-deethylase, p-nitrophenol UDPGA-transferase and epoxide hydrolase) and in cytosol (e.g., glutathione reductase, glutathione S-transferase, NADH:quinone reductase and UDP-glucose dehydrogenase). The structures of indole and indole-3-carbinol are similar to benzofuran except for the substitution of nitrogen with oxygen atom within the furan ring. Results showed that the activities of UDPGA-transferase and NADH:quinone reductase were not elevated by these indole compounds. While the chemical structure of these two indole compounds are identical except for the presence of the carbinol (methanol) group in indole-3-carbinol, there were marked differences in the types and activities of microsomal enzymes that were enhanced. Among the microsomal enzyme activities determined, indole elevated only the NADPH:cytochrome c reductase, while indole-3-carbinol increased several mixed function oxidase and particularly the epoxide hydrolase activities. Based on the chemical structures of tested compounds and the observed results, possible explanations for the mechanisms involved in elevating epoxide hydrolase activity by benzofuran and indole-3-carbinol are discussed.

  • PDF

Activity Changes in Phase II Drug-metabolizing Enzymes UDP-Glucoronosyl Transferase and Glutathione S-Ttansferase to Crude Oil Exposure in Mussel and Rockfish (원유의 노출이 담치와 조피볼락의 phase II 약물대사효소 UDP-glucoronosyl transferase 및 glutathione S-transferase의 활성에 미치는 영향)

  • Park Kwan-Ha;Kim Ju-Wan;Park Eum-Mi;Lim Chul-Won;Choi Min-Soon;Choe Sun-Nam;Hwang In-Young;Kim Jung-Sang
    • Environmental Analysis Health and Toxicology
    • /
    • v.21 no.2 s.53
    • /
    • pp.103-113
    • /
    • 2006
  • This study examined effects of crude oil on the phase II drug-metabolizing enzymes UDP-glucuronosyl transferase (UDPGT) and glutathione S-transferase (GST) in mussel Mytilus edulis and rockfish Sebastes schlegeli, a representative bivalve and a culture fish, respectively. This work also intended indirectly to evaluate the post impact recovery from the massive oil tanker spillage accidents occurred during the summer of 1995 in the sea area off Yosu City, Chonnam. For these, enzyme activities of UDPGT and GST were examined in the fish and mussel following laboratory exposure to fresh crude oil, weathered oil, field-obtained oil residues, or in the field biota samples. Decreased GST activity was observed in rock fish following exposure to oil-soluble fraction (OSF) of fresh oil. A similar diminished GST activity was also observed after OSF of artificially weathered oil. OSF of field oil residues retrieved from the spillage area approximately 1 year later also exerted a slight inhibition of GST to rockfish. There was neither a change in UDPGT in rockfish, nor were there changes in mussel in both enzymes to any oil fractions. We could not observe any difference in the two enzymes either in rockfish or mussel sampled from the field during $1.5{\sim}2.0$ years post spillage, indicating that their enzyme systems might had been recovered by the sampling time. In conclusion, it seems that the inhibition of GST activity in rockfish is a biomarker response to crude oil exposure. The results, however, must be interpreted with care, as the inhibition nay reflect various factors such as oil concentration, duration and water temperature.

Effects of Dietary Proteins and Inositol Hexaphosphate on the Preneoplastic Lesions and Antioxidant Enzymes of Hepatocellular Carcinogenesis in Rats (식이 단백질의 종류 및 Inositol Hexaphosphate가 간세포 암화과정에서 전암성 병변의 지표 및 항산화 효소계에 미치는 영향)

  • 김현덕;최혜미
    • Korean Journal of Community Nutrition
    • /
    • v.4 no.2
    • /
    • pp.239-247
    • /
    • 1999
  • Six-week-old Sprague Dawley rats were fed the diets of 20% casein or soy protein. Two weeks after the feeding, hepatocellular chemical carcinogenesis was initiated by diethylnitrosamine(DEN), and promoted by the diet containing 0.01% 2-acetylamino-fluorene(AAF) and two-thirds partial hepatectomy(PH). The animals were sacrificed at 8 weeks after the DEN injection. The area of placetal glutathione S-trnasferase(GST-P) positive foci, the activities of several enzymes in cellualr antioxidant enzyme systems and glucose 6-phosphatase were determined to investigate the mechanism of the anticarcinogenic effect by the dietary proteins. In another set of experiments, the drinking water of rats fed casein was supplemented with 1.5% inositol hexaphosphate(InsP6) to elucidate whether it has the comparable anticancer action of soy protein. The area and number of GST-P positive foci in the soy protein group were significantly(p<0.05) lower than those inthe casein group. The livers of rats fed casein showed moderate fattydegeneration and larger hyperplastic nodules than those of rats fed soy protein. In another set of experiments, the area and number of GST-P positive foci in the rats fed casein supplemented with InsP6 were not significantly different from those in the rats fed casein or soy protein. The lipid peroxidation of rats fed different protein sources showed no significant difference. Glutathione S-transferase(GST) activities were increased significantly(p<0.05) by carcinogen treatment in all dietary groups. Glucose 6-phosphatase(G6Pase) activities were decreased by carcinogen treatment, and hence showed a reverse relationship(r=-0.695, p<0.01) to the GST-P positive foci. Therefore, the activities in the rats fed casein were lower than those in the rats fed soy protein. These results suggest that the soy protein seems to be more anti-carcinogenic than casein by decreasing the preneoplastic lesion and by increasing the membrane stability but inositol hexaphosphate, a component of soy protein, may not be protective against hepatocarcinogenesis.

  • PDF

A Study on the Effect of Injection Frequency on the Liver Damage in Rats (Bromobenzene의 투여 횟수에 따른 간독성의 차이)

  • 이상희;전태원;윤종국
    • Biomedical Science Letters
    • /
    • v.6 no.1
    • /
    • pp.29-36
    • /
    • 2000
  • To investigate the effect of injection frequency of bromobenzene on the liver damage, bromobenzene (400 mg/kg, i.p.) was given daily to rats for six days. All experimental animals were sacrificed at 24 hours after the last injection. Morphological changes of the liver were observed under a light microscopic examination. Functional changes of the liver were evaluated by the measurement of alanine aminotransferase activity. To clarify the cause of discrepancy in liver damage, hepatic glutathione (GSH) content, glutathione S-transferase (GST) and aniline hydroxylase (AH) activities were determined. In the experiments of daily bromobenzene treatments, the sacrificed animals at six day (6 time-injected animals) showed slighter liver damage than those sacrificed at 3 day (3 time-injected ones), based on the liver morphological or functional findings; the decreasing ratio of GSH content and increasing ratio of liver GST and AH activities in the 6 time-injected group were higher than those in the 3 time-injected one.

  • PDF

Suppressive Effects of Coumarins on Pumpkin Seedling Growth and Glutathione S-Transferase Activity

  • Hossain, Md. Daud;Li, Jing;Guo, Shirong;Fujita, Masayuki
    • Journal of Crop Science and Biotechnology
    • /
    • v.11 no.3
    • /
    • pp.187-192
    • /
    • 2008
  • The effects of some coumarins(coumarin, 7-hydroxycoumarin, scopoletin and esculetin) were investigated on pumpkin(Cucurbita maxima Duch.) seedlings and on pumpkin glutathione S-transferases(GSTs). Coumarin and esculetin suppressed the growth of seedlings, especially the elongation of roots as well as hypocotyls. Among the compounds tested, only esculetin inhibited the activity of a particular pumpkin GST by 50%, CmGSTU3 toward 1-chloro-2, 4- dinitrobenzene(CDNB) and at a concentration of 22 ${\mu}M$. Both ethylacetae(EtOAc) and water fractions in pumpkin seedlings and different organs of one-month-old pumpkin plants contained esculetin or similar hydrophobic fluorescent substances as well as hydrophilic substances, which showed different degrees of inhibitory effects on CmGSTU3 activity.

  • PDF

Effect of Aging on the Liver Damage in Bromobenzene-pretreated Rats (연령이 다른 흰쥐에 Bromobenzene 미치는 영향)

  • 한선일;윤형원;윤종국
    • Biomedical Science Letters
    • /
    • v.5 no.2
    • /
    • pp.201-208
    • /
    • 1999
  • To evaluate an effect of growth periods on the bromobenzene-induced liver damage, bromobenzene was administrated to 5-week-old rats and 10-week-old rats pretreated with bromobenzene 5 times every other day for 10 days and then the animals were sacrificed. The results were obtained as follows; The increasing rate of serum levels of alanine aminotransferase, xanthine oxidase activity, hepatic lipid peroxide contents, liver weight per body weight (%) and decreasing rate of hepatic contents of protein to each control group were higher in 10-week-old rats than 5-week-old rats by the pretreatment of bromobenzene. According to the above results, 10-week-old rats indicated more severe liver injury than 5-week-old those in case of bromobenzene pretreatment. On the other hand, hepatic aniline hydroxylase activity was more increased in 10-week-old rats than 5-week-old rats both in control and bromobnezene pretreated rats where as the reverse in hepatic glutathione S-transferase. In case of hepatic GSH determination at the intervals of 2, 4, 8, 24 hours throughout 24 hr after administration of single dose of bromobenzene to 5-week-old and 10-week-old rats both in control and bromobnezene pretreated, the rate of GSH utilization was lower in 10-week-old rats than 5-week-old rats. In conclusion, from the above experimental, it is deduce that the 10-week-old rats showed more severe liver injury than 5-week-old rats by the bromobenzene treatment because the disposal ability of bromobenzene in liver was lower in 10-week-old rats than 5-week-old rats.

  • PDF

Antioxidative Status, DNA Damage and Lipid Profiles in Korean Young Adults by Glutathione S-Transferase Polymorphisms (Glutathione S-transferase (GST) 유전자 다형성에 따른 우리나라 젊은 성인의 항산화 상태, DNA 손상 및 지질 양상)

  • Jo, Hye-Ryun;Lee, Hye-Jin;Kang, Myung-Hee
    • Journal of Nutrition and Health
    • /
    • v.44 no.1
    • /
    • pp.16-28
    • /
    • 2011
  • Oxidative stress leads to the induction of cellular oxidative damage, which may cause adverse modifications of DNA, proteins, and lipids. The production of reactive species during oxidative stress contributes to the pathogenesis of many diseases. Antioxidant defenses can neutralize reactive oxygen species and protect against oxidative damage. The aim of this study was to assess the antioxidant status and the degree of DNA damage in Korean young adults using glutathione s-transferase (GST) polymorphisms. The GSTM1 and GSTT1 genotypes were characterized in 245 healthy young adults by smoking status, and their oxidative DNA damage in lymphocytes and antioxidant status were assessed by GST genotype. General characteristics were investigated by simple questionnaire. From the blood of the subjects, GST genotypes; degree of DNA damage in lymphocytes; the erythrocyte activities of superoxide dismutase, catalase, and glutathione peroxidase; plasma concentrations of total peroxyl radical-trapping potential (TRAP), vitamin C, ${\alpha}$- and ${\gamma}$-tocopherol, ${\alpha}$- and ${\beta}$-carotene and cryptoxanthin, as well as plasma lipid profiles, conjugated diene (CD), GOT, and GPT were analyzed. Of the 245 subjects studied, 23.2% were GSTM1 wild genotypes and 33.4% were GSTT1 wild genotype. No difference in erythrocyte activities of superoxide dismutase, catalase, or glutathione peroxidase, and the plasma TRAP level, CD, GOT, and GPT levels were observed between smokers and non-smokers categorized by GSTM1 or GSTT1 genotype. Plasma levels of ${\alpha}$- and ${\gamma}$-tocopherol increased significantly in smokers with the GSTT1 wild genotype (p < 0.05); however, plasma level of ${\alpha}$-carotene decreased significantly in non-smokers with the GSTM1 wild genotype (p < 0.05). DNA damage assessed by the Comet assay was significantly higher in non-smokers with the GSTM1 genotype; whereas DNA damage was significantly lower in non-smokers with the GSTT1 genotype. Total cholesterol and LDL cholesterol levels were significantly higher in non-smokers with the GSTT1 genotype than those with the GSTT1 wild genotype (p < 0.05). In conclusion, the GSTM1 genotype or the GSTT1 wild genotype in non-smokers aggravated their antioxidant status through DNA damage of lymphocytes; however, the GSTT1 wild type in non-smokers had normal plasma total cholesterol and LDL-cholesterol levels. This finding confirms that GST polymorphisms could be an important determinant of antioxidant status and plasma lipid profiles in non-smoking young adults. Further study is necessary to clarify the antioxidant status and/or lipid profiles of smokers with the GST polymorphism and to conduct a study with significantly more subjects.