• Title/Summary/Keyword: Glutamate excitotoxicity

Search Result 41, Processing Time 0.028 seconds

Sustained Intracellular Acidosis Triggers the Na+/H+ Exchager-1 Activation in Glutamate Excitotoxicity

  • Lee, Bo Kyung;Jung, Yi-Sook
    • Biomolecules & Therapeutics
    • /
    • v.25 no.6
    • /
    • pp.593-598
    • /
    • 2017
  • The $Na^+/H^+$ exchanger-1 (NHE-1) is a ubiquitously expressed pH-regulatory membrane protein that functions in the brain, heart, and other organs. It is increased by intracellular acidosis through the interaction of intracellular $H^+$ with an allosteric modifier site in the transport domain. In the previous study, we reported that glutamate-induced NHE-1 phosphorylation mediated by activation of protein kinase C-${\beta}$ (PKC-${\beta}$) in cultured neuron cells via extracellular signal-regulated kinases (ERK)/p90 ribosomal s6 kinases (p90RSK) pathway results in NHE-1 activation. However, whether glutamate stimulates NHE-1 activity solely by the allosteric mechanism remains elusive. Cultured primary cortical neuronal cells were subjected to intracellular acidosis by exposure to $100{\mu}M$ glutamate or 20 mM $NH_4Cl$. After the desired duration of intracellular acidosis, the phosphorylation and activation of PKC-${\beta}$, ERK1/2 and p90RSK were determined by Western blotting. We investigated whether the duration of intracellular acidosis is controlled by glutamate exposure time. The NHE-1 activation increased while intracellular acidosis sustained for >3 min. To determine if sustained intracellular acidosis induced NHE-1 phosphorylation, we examined phosphorylation of NHE-1 induced by intracellular acidosis by transient exposure to $NH_4Cl$. Sustained intracellular acidosis led to activation and phosphorylation of NHE-1. In addition, sustained intracellular acidosis also activated the PKC-${\beta}$, ERK1/2, and p90RSK in neuronal cells. We conclude that glutamate stimulates NHE-1 activity through sustained intracellular acidosis, which mediates NHE-1 phosphorylation regulated by PKC-${\beta}$/ERK1/2/p90RSK pathway in neuronal cells.

The Neuroprotective Potential of Cyanidin-3-glucoside Fraction Extracted from Mulberry Following Oxygen-glucose Deprivation

  • Bhuiyan, Mohammad Iqbal Hossain;Kim, Hyun-Bok;Kim, Seong-Yun;Cho, Kyung-Ok
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.6
    • /
    • pp.353-361
    • /
    • 2011
  • In this study, cyanidin-3-glucoside (C3G) fraction extracted from the mulberry fruit (Morus alba L.) was investigated for its neuroprotective effects against oxygen-glucose deprivation (OGD) and glutamate-induced cell death in rat primary cortical neurons. Cell membrane damage and mitochondrial function were assessed by LDH release and MTT reduction assays, respectively. A time-course study of OGD-induced cell death of primary cortical neurons at 7 days in vitro (DIV) indicated that neuronal death was OGD duration-dependent. It was also demonstrated that OGD for 3.5 h resulted in approximately 50% cell death, as determined by the LDH release assay. Treatments with mulberry C3G fraction prevented membrane damage and preserved the mitochondrial function of the primary cortical neurons exposed to OGD for 3.5 h in a concentration-dependent manner. Glutamate-induced cell death was more pronounced in DIV-9 and DIV-11 cells than that in DIV-7 neurons, and an application of $50{\mu}M$ glutamate was shown to induce approximately 40% cell death in DIV-9 neurons. Interestingly, treatment with mulberry C3G fraction did not provide a protective effect against glutamate-induced cell death in primary cortical neurons. On the other hand, treatment with mulberry C3G fraction maintained the mitochondrial membrane potential (MMP) in primary cortical neurons exposed to OGD as assessed by the intensity of rhodamine-123 fluorescence. These results therefore suggest that the neuroprotective effects of mulberry C3G fraction are mediated by the maintenance of the MMP and mitochondrial function but not by attenuating glutamate-induced excitotoxicity in rat primary cortical neurons.

Inhibitory Effects of Xiaoshuan Zaizao Wan on Excitotoxic and Oxidative Neuronal Damage Induced in Primary Cultured Rat Cortical Cells (일차 배양한 흰쥐 대뇌피질세포의 흥분성 및 산화적 신경세포손상에 대한 소전재조환의 억제효과)

  • 조정숙
    • YAKHAK HOEJI
    • /
    • v.47 no.6
    • /
    • pp.369-375
    • /
    • 2003
  • Xiaoshuan Zaizao Wan (XZW) has been used in China to improve hemiplegia, deviation of eye and mouth, and dysphasia due to cerebral thrombosis. To characterize pharmacological actions of XZW, we evaluated its effects on neuronal cell damage induced in primary cultured rat cortical cells by various oxidative insults, glutamate or N-methyl-D-aspartate (NMDA), and $\beta$-amyloid fragment ($A_{\beta(25-35)}$). XZW was found to inhibit the oxidative neuronal damage induced by $H_2O_2$, xanthine/xanthine oxidase, or $Fe^{2+}$/ascorbic acid. It also attenuated the excitotoxic damage induced by glutamate or NMDA. The NMDA-induced neurotoxicity was more effectively inhibited than the glutamate-induced toxicity. In addition, we found that XZW protected neurons against the $A_{\beta(25-35)}$-induced toxicity. Moreover; XZW exhibited dramatic inhibition of lipid peroxidation in rat brain homogenates and mild 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity. Taken together; these results demonstrate that XZW exerts neuroprotective effects against oxidative, excitotoxic, or $A_{\beta(25-35)}$-induced neuronal damage. These findings may provide pharmacological basis for its clinical usage treating the sequelae caused by cerebral thrombosis. Furthermore, XZW may exert beneficial effects on Alzheimer's disease and other oxidative stress-related neurodegenerative disorders.

Inhibition of Oxidative Stress-induced and Excitotoxic Neuronal Cell Damage by Xuesaitong Ruanjiaonang (혈색통연교낭(血塞通軟膠囊)의 산화적 및 흥분성 신경세포독성 억제작용)

  • Cho Jungsook
    • YAKHAK HOEJI
    • /
    • v.49 no.1
    • /
    • pp.30-37
    • /
    • 2005
  • Xuesaitong Ruanjiaonang (XR), a soft capsule containing Panax notoginseng saponins as main ingredients, is believed to remove extravasated blood and increase cerebral blood flow by improving blood circulation, and therefore, has been used in China to treat ischemic stroke or hemiplegia caused by cerebral thrombosis. To characterize pharmacological actions of XR, the present study evaluated its effects on neuronal cell damage induced by various oxidative insults or excitotoxic amino acids in primary cultured rat cortical cells. The neuronal cell viability was not affected by XR with the exposure for 2 h at the concentrations tested in this study ($10{\sim}1000\;{\mu}g/ml$). However, significant reduction of the cell viability was observed when the cultured cells were exposed to XR at $1000\;{\mu}g/ml$ for 24 h. XR was found to concentration-dependently inhibit the oxidative neuronal damage induced by $H_{2}O_2$, xanthine/xanthine oxidase or $Fe^{2+}$/ascorbic acid. In addition, it dramatically inhibited the excitotoxic damage induced by glutamate or N-methyl-D-aspartate (NMDA). We found that the NMDA-induced neurotoxicity was inhibited more effectively and potently than the glutamate-induced toxicity. Moreover, XR was found to exert mild inhibition of lipid peroxidation induced by $Fe^{2+}$/ascorbic acid in rat brain homogenates and some 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity. Taken together, these results demonstrate neuroprotective and antioxidant effects of XR, showing inhibition of oxidative and excitotoxic damage in the cultured cortical neurons, as well as inhibition of lipid peroxidation and its radical scavenging activity. Considering that excitotoxicity and oxidative stress pl ay crucial roles in neuronal cell damage during ischemia and reperfusion, these results may provide pharmacological basis for its clinical usage to treat ischemic stroke.

Protection of spontaneous and glutamate-induced neuronal damages by Soeumin Sibjeundaibo-tang and Soyangin Sibimijihwang-tang in cultured mice cerebrocortical cells

  • Lee, Mi-Young;Ma, Jin-Yeul;Choo, Young-Kug;Jung, Kyu-Yong
    • Advances in Traditional Medicine
    • /
    • v.1 no.1
    • /
    • pp.55-63
    • /
    • 2000
  • Soeumin Sibjeundaibo-tang (SJDBT) and Soyangin Sibimijihwang-tang (SMJHT) have been used traditionally to improve the systemic blood circulation and biological energy production in the patients with circulatory and neuronal diseases. The object of this study is to determine the protective effects of SJDBT and SMJHT extracts on the spontaneous and glutamate-induced neuronal damages in cultured cells derived from mice cerebral cortex. At 14 days after beginning the cultures, the activity of lactate dehydrogenase released into the culture media was significantly decreased by treatment of cerebroneuronal cells with SJDBT and SMJHT (0.1 mg/ml) for 7 days. By comparison with the normal cells, cerebroneuronal morphology was dramatically changed by treatment of glutamate (1 mM) for 12 hrs, and this was conspicuously recovered by pretreatment of cerebroneural cells with SJDBT and SMJHT (0.1-1.0 mg/ml) for 2 days. Moreover, glutamated-induced DNA fragmentation was also protected by pretreatment of cerebroneuronal cells with those extracts. These results suggest that naturally occurring and glutamate-induced degeneration of cultured cerebrocortical cells may be related, in part, to the process of apoptotic cell death. The pharmacological properties of SJDBT and SMJHT extracts to improve cerebroneuronal degeneration may be considered as one of useful medicines that can prevent cerebrocortical impairments resulted from age-dependent and excitotoxicity-induced neuronal degeneration in human brain.

  • PDF

Effects of MK-801, CNQX, Cycloheximide and BAPTA-AM on Anoxic Injury of Hippocampal Organotypic Slice Culture (해마 조직 절편 배양을 이용한 무산소 손상에 대한 MK-801, CNQX, Cycloheximide 및 BAPTA-AM의 효과)

  • Moon, Soo-Hyeon;Kwon, Taek-Hyon;Park, Youn-Kwan;Chung, Heung-Seob;Suh, Jung Keun
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.8
    • /
    • pp.1008-1018
    • /
    • 2000
  • Objective : Glutamate induced excitotoxicity is one of the leading causes of cell death under pathologic condition. However, there is controversy whether excitotoxicity may also participate in the neuronal death under low intensity insult such as simple hypoxia or hypoglycemia. To investigate the role of NMDA receptor in low intensity insult, we chose anoxia as the method of injury and used organotypically cultured hippocampal slice as the material of experiment. Materials & Methods : The hippocampal slices cultured for 2-3 weeks were exposed to 60 minutes of complete oxygen deprivation(anoxia). Neuronal death was assessed with Sytox stain. Corrected optical density of fluorescence in gray scale, used as cellular death indicator, was obtained from pictures taken at 24 and 48 hours following the insult. The well-known in vivo phenomenon of regional difference in susceptibility of hippocampal sub-fields to ischemic insult was reproduced in HOSC(hippocampal organotypic slice culture) by complete oxygen deprivation injury. Results : $CA_1$ was the most vulnerable to complete oxygen deprivation in hippocampus while $CA_3$ was resistant. Oxygen deprivation for 10 and 20 minutes with glucose(6.5g/l) present was insufficient to induce neuronal death in the cultured hippocampal slice. However, after 30 minutes exposure under anoxic condition, neuronal death was able to be detected in the center of $CA_1$ area. The intensity and area of fluorescence indicating cell death correlated with the duration of oxygen deprivation. NMDA receptor and non-NMDA receptor blocking with MK-801(30 & $60{\mu}M$) and CNQX($100{\mu}M$) did not provide cellular protection to HOSC against damage induced by oxygen deprivation, but increased intracellular calcium buffering capacity with BAPTA-AM($10{\mu}M$) was effective in preventing neuronal death (p=0.01, Student's t-test). Cycloheximide($1{\mu}g/ml$, $10{\mu}g/ml$) provided no protection to HOSC against insult of complete oxygen deprivation for 60 minutes and combined therapy of MK-801(30 & $60{\mu}M$) and cycloheximide(1 & $10{\mu}g/ml$) was also ineffective in preventing neuronal death. Conclusion : The results of this study show that the another mechanism not associated with glutamate receptor(NMDA & non NMDA) may play major role in cell death mechanisms induced by complete oxygen deprivation and increased intracellular calcium during anoxia may participate in the neuronal death mechanism of oxygen deprivation. Further investigation of the calcium entry channel activated during oxygen deprivation is necessary to understand the neuronal death of anoxia.

  • PDF

Pre-ischemic Treatment with Ampicillin Reduces Neuronal Damage in the Mouse Hippocampus and Neostriatum after Transient Forebrain Ischemia

  • Lee, Kyung-Eon;Kim, Seul-Ki;Cho, Kyung-Ok;Kim, Seong-Yun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.6
    • /
    • pp.287-291
    • /
    • 2008
  • Ampicillin, a $\beta$-lactam antibiotic, has been reported to induce astrocytic glutamate transporter-l which plays a crucial role in protecting neurons against glutamate excitotoxicity. We investigated the effect of ampicillin on neuronal damage in the mouse hippocampus and neostriatum following transient global forebrain ischemia. Male C57BL/6 mice were anesthetized with halothane and subjected to bilateral occlusion of the common carotid artery for 40 min. Ampicillin was administered post-ischemically (for 3 days) and/or pre-ischemically (for $3{\sim}5$ days until one day before the onset of ischemia). Pre- and post-ischemic treatment with ampicillin (50 mg/kg/day or 200 mg/kg/day) prevented ischemic neuronal death in the medial CAI area of the hippocampus as well as the neostriatum in a dose-dependent manner. In addition, ischemic neuronal damage was reduced by pre-ischemic treatment with ampicillin (200 mg/kg/day). In summary, our results suggest that ampicillin plays a functional role as a chemical preconditioning agent that protects hippocampal neurons from ischemic insult.

The Protective Effects of Woowhangcheongshim-won(WCW) on Middle Cerebral Artery Occlusion (우황청심원이 뇌허혈을 유발시킨 흰쥐의 신경전달물질에 미치는 영향)

  • 박치상;이은주;박원미;김미려;조정숙;김영호;양재하;박창국
    • The Journal of Korean Medicine
    • /
    • v.21 no.1
    • /
    • pp.11-19
    • /
    • 2000
  • The present study was carried out to investigate the effects of Woowhangcheongshim-won(WCW) on the extracellular concentrations of amino acid neurotransmitters(glutamate, aspartate, GABA, glycine, taurine, alanine, and tyrosine) and organic acid (lactate and pyruvate) in striatum and cerebral infarction volume in rats subjected to permanent focal cerebral ischemia induced by 2 hours of middle cerebral artery occlusion(MCAO), using intracerebral microdialysis as the sampling technique, Microdialysis probes were inserted into the lateral part of the caudate-putamen 2 hours before the experiment and microdialyzates were collected at 20min intervals and analyzed by high performance liquid chromatography, WCW significantly decreased the infarction volume with reducing focal cerebral ischemia-induced increase of extracellular glutamate, asparate, and tyrosine. On the other hand, the increase of GABA and taurine was enhanced after treatment of WCW in the ischemia-induced rats, These results suggest that WCW can produce a neuroprotective effect against cerebral ischemia by regulating extracellular excitatory and inhibitory amino acid levels in relation to the concept of excitotoxicity in brain ischemia.

  • PDF

Pretreatment of curcumin protects hippocampal neurons against excitotoxin-induced cell death (Curcumin의 전처리는 excitotoxin에 의한 세포사멸로부터 해마신경세포를 보호)

  • Kim, So-Jung;Kim, Keun-Ho;Kong, Kyoung-Hye;Lee, Jae-Won
    • Journal of Life Science
    • /
    • v.17 no.1 s.81
    • /
    • pp.12-17
    • /
    • 2007
  • Curcumin is a natural phenolic yellow curry spice, derived from the tumeric, which has been used for the treatment of diseases associated with oxidative stress and inflammation. Curcumin is known to have both anti-oxidative and anti-inflammatory properties. These properties can be beneficial to protect the brain from the neurodegenerative diseases. We now report the neuroprotective effects of curcumin pretreatment in primary hippocampal neurons to glutamate-induced excitotoxicity. Pretreatment of embryonic mouse hippocampal cell cultures with low does of curcumin protected neurons against glutamate-induced death, however, this neuroprotection was not correlated with the modulation of oxidative stress. Interestingly, high dose of curcumin showed the cytotoxicity in primary cultured hippocampal neurons. Immunoblot analyses showed that levels of stress response. protein HSP70 were significantly elevated in neurons exposed to low dose of curcumin, whereas levels of cleaved PARP were increased in neurons exposed to high dose of curcumin. These findings show that curcumin can modulate neuronal responses to glutamate, and suggest possible use of curcumin and related compounds in the prevention and/or treatment of neurodegenerative disorders.

Neuroprotective and Antioxidant Effects of the Butanol Fraction Prepared from Opuntia ficus-indica var. saboten

  • Cho, Jung-Sook;Han, Chang-Kyun;Lee, Yong-Sup;Jin, Chang-Bae
    • Biomolecules & Therapeutics
    • /
    • v.15 no.4
    • /
    • pp.205-211
    • /
    • 2007
  • The fruits and stems of Opuntia ficus-indica var. saboten have been reported to exhibit a variety of pharmacological actions, including antioxidant, analgesic, anti-inflammatory, and anti-ulcer effects. In the present study, we evaluated effects of the butanol fraction (SK OFB901) prepared from the 50% ethanol extract of the stems on various types of neuronal injuries induced by oxidative stress, excitotoxins, and amyloid ${\beta}\;(A_{\beta})$ in primary cultured rat cortical cells. Its antioxidant and radical scavenging activities were also evaluated by cell-free bioassays. We found that SK OFB901 strongly inhibited the oxidative neuronal damage induced by $H_2O_2$ or xanthine/xanthine oxidase. In addition, it exhibited marked inhibition of the excitotoxic neuronal damage induced by glutamate, N-methyl-D-aspartic acid, or kainate. Furthermore, the $A_{\beta(25-35)}$-induced neurotoxicity was also significantly attenuated by SK OFB901. It was found to inhibit lipid peroxidation initiated by $Fe^{2+}$ and L-ascorbic acid in rat brain homogenates and scavenge 1,1-diphenyl-2-picrylhydrazyl free radicals. These results indicate that the butanol fraction prepared from the stems of Opuntia ficus-indica var. saboten exerts potent antioxidant and neuroprotective effects through multiple mechanisms, implying its potential applications for the prevention or management of neurodegenerative disorders associated with oxidative stress, excitotoxicity, and $A{\beta}$.