• Title/Summary/Keyword: Glucuronidation

Search Result 25, Processing Time 0.064 seconds

Glucuronidation of Hydroxylated Polychlorinated Biphenyl by Channel Catfish Liver (챠넬메기 간에서 Hydroxylated Polychlorinated Biphenyl의 Glucuronidation)

  • Shin, Hea-Soon
    • Environmental Analysis Health and Toxicology
    • /
    • v.23 no.3
    • /
    • pp.195-200
    • /
    • 2008
  • Hydroxylated polychlorinated biphenyl (OH-PCBs)는 PCB의 CYP-dependent oxidation의 대사물로서 잠재적 독성이 강하고 지질친화성을 가지며 생물군에 지속적인 축적성을 나타낸다. OH-PCBs의 해독화 효능을 조사하기 위하여 channel catfish 간에서 glucuronidation을 통한 해독작용 가능성을 평가하고 biphenyl 구조에 다양한 염소치환의 구조적 차이점에 따른 영향을 비교 분석하여 보았다. Kinetic parameters에서 $K_m$$V_{max}$$192{\sim}871{\mu}M$, $869{\sim}1774$ pmo1/min/mg으로써 4'-OH-PCB35와 4'-OH-PCB69이 가장 높은 속도의 glucuronidation을 나타냈으며, 구조적 차이점에서 phenolic group에 한 개의 염소치환이 존재할 경우보다 두 개의 염소치환이 존재할 경우에 OH-PCBs(p<0.001)의 glucuronidation에 대한 $V_{max}$를 현저하게 낮추는 결과를 보였다.

EFFECTS OF BHA AND ACETAMINOPHEN ON THE BILIARY EXCRETION OF PHENOLPHTHALEIN AND THE HEPATIC GLUCURONIDATION IN MALE RATS

  • Choe, Suck-Young;Lim, Wha-Jae;Rina Yu
    • Toxicological Research
    • /
    • v.9 no.2
    • /
    • pp.133-145
    • /
    • 1993
  • The present study examined the effects of butylated hydroxyanisole (BHA) on acetaminophen (AA)-induced hepatotoxicity in male rats and also examined the effects of these compounds on the biliary excretion of phenolphthalein (PP) and the hepatic glucuronidation. Male Sprague-Da-wley rats were pretreated with BHA (0.75% in diet for 10 days) were given single dose of AA (600mg/kg, ip) and liver function was determined 24 hr later. Serum activity of alanine aminotransferase (ALT) and histopathology were used as indices of hepatotoxicity.

  • PDF

Effect of Glycyrrhizae Radix on the Glucuronidation in Rat Liver

  • Moon, Aree;Lee, Mi-Kyung;Kim, Seung-Hee;Kim, Young-Choong;Lee, Song-Deuk
    • Archives of Pharmacal Research
    • /
    • v.18 no.5
    • /
    • pp.320-324
    • /
    • 1995
  • Pretreatment of Glycyrrhizae Radix(GR) to male Sprague-Dawley rats was demonstrated to increase excretion of acetaminophen-glucuronide ocnjugate when bile nad urine were assayed after administration of acetaminophen. In order to study the effect of GR on the glucuronidation in rats, we examined enzymatic activities of hepatic UDP-glucuronosyl-transferases (UDP-GT1 and UDP-GT2) and intracellular concentrations of hepatic UDP-glucuronic acid (UDP-GA), upon the administration of GR (1 g/kg body weight, p.o.) or glycyrrhizin (23 mg/kg body weight, p.o.) a major component of GR, for 6 days. GR and glycyrrhizin caused increases in specific activities of UDP-GT2 111% and 96% respectively. Specific activity of UDP-GT1 was increased 25% by GR treatment whereas it was not significantly increased by glycyrrhizin. Concentrations of UDP-GA were increased 257% by GR and 484% by glycyrrhizin. These data indicate that GR activated glucuronidation and thus suggest the possibility that GR may influence detoxification of xenobiotics in rat liver.

  • PDF

Effects of Vitamins C and E on Hepatic Drug Metabolizing Function in Nypoxia/Reoxygenation (저산소 및 산소재도입시 vitamin C와 E가 간장 약물대사 기능에 미치는 영향)

  • 윤기욱;이상호;이선미
    • YAKHAK HOEJI
    • /
    • v.44 no.3
    • /
    • pp.237-244
    • /
    • 2000
  • Liver isolated from 18 hours fasted rats was subjected to $N_2$hypoxia (for 45 min) followed by reoxygenation (for 30 min). The perfusion medium used was Krebs-Henseleit bicarbonate buffer (pH 7.4, $37^{\circ}C$). Vitamin C (0.5 mM) and trolox C (0.5 mM), soluble vitamin E analog, were added to perfusate. Lactate dehydrogenase (LDH), total glutathione, oxidized glutathione, lipid peroxide and drug-metabolizing enzymes were measured. After hypoxia LDH significantly increased but this increase was attenuated by vitamin C and combination of vitamin C and E. Total glutathione and oxidized glutathione in perfusate markedly increased during hypoxia and this increase was inhibited by vitamins C, E and its combination. Similarly; oxidized glutathione and lipid peroxide in liver tissue increased after hypoxia and reoxygenation and this increase was inhibited by vitamin I and combination of vitamin C and E. Hepatic drug metabolizing function (phase I, II) were suppressed during hypoxia but improved during reoxygenation. While vitamins C and E only increased glucuronidation, the combination of vitamin C and E increased the oxidation, glucuronidation and sulfation. Our findings suggest that vitamins C and E synergistically ameliorates hepatocellular damage as indicated by abnormalities in drug metabolizing function during hypoxia/reoxygenation and that this protection is in major part, caused by decreased oxidative stress.

  • PDF

Genetic Polymorphisms of UGT1A and their Association with Clinical Factors in Healthy Koreans

  • Kim, Jeong-Oh;Shin, Jeong-Young;Lee, Myung-Ah;Chae, Hyun-Suk;Lee, Chul-Ho;Roh, Jae-Sook;Jin, Sun-Kyung;Kang, Tae-Sun;Choi, Jung-Ran;Kang, Jin-Hyoung
    • Genomics & Informatics
    • /
    • v.5 no.4
    • /
    • pp.161-167
    • /
    • 2007
  • Glucuronidation by the uridine diphosphateglucuronosy-ltransferase 1A enzymes (UGT1As) is a major pathway for elimination of particular drugs and endogenous substances, such as bilirubin. We examined the relation of eight single nucleotide polymorphisms (SNPs) and haplotypes of the UGT1A gene with their clinical factors. For association analysis, we genotyped the variants by direct sequencing analysis and polymerase chain reaction (PCR) in 218 healthy Koreans. The frequency of UGT1A1 polymorphisms, -3279T>G, -3156G>A, -53 $(TA)_{6>7}$, 211G>A, and 686C>A, was 0.26, 0.12, 0.08, 0.15, and 0.01, respectively. The frequency of -118 $(T)_{9>10}$ of UGT1A9 was 0.62, which was significantly higher than that in Caucasians (0.39). Neither the -2152C>T nor the -275T>A polymorphism was observed in Koreans or other Asians in comparison with Caucasians. The -3156G>A and -53 $(TA)_{6>7}$ polymorphisms of UGT1A were significantly associated with platelet count and total bilirubin level (p=0.01, p=0.01, respectively). Additionally, total bilirubin level was positively correlated with occurrence of the UGT1A9-118 $(T)_{9>10}$ rare variant. Common haplotypes encompassing six UGT1A polymorphisms were significantly associated with total bilirubin level (p=0.01). Taken together, we suggest that determination of the UGT1A1 and UGT1A9 genotypes is clinically useful for predicting the efficacy and serious toxicities of particular drugs requiring glucuronidation.

Deletion Polymorphism of UGT2B17 and Its Relation to Lung Cancer (UGT2B17 유전자의 deletion polymorphism과 폐암과의 연관성)

  • Lee, Se-Ra;Ahn, Myoung-Hyun;Seol, So-Young;Lee, Ji-Sun;Chung, Chung-Nam;Leem, Sun-Hee
    • Journal of Life Science
    • /
    • v.20 no.5
    • /
    • pp.703-709
    • /
    • 2010
  • Glucuronidation is a major pathway for NNAL [4-(methylnitrosamno)-1-(3-pyridyl)-1-butanol] and UGT2B17 (UGT, uridine diphospho-glucuronosyltransferase) is from the UGT2B family that glucuronidates carcinogens. UGT2B17 deletion was associated with decreased levels of NNAL and with increased risk of some cancers. The UGT2B17 gene varies in copy number from zero to two per individual in humans. To examine whether UGT2B17 gene deletion is associated with the risk of lung cancer, we investigated copy number variants (CNV) in 271 cancer-free controls and 176 cases of lung cancer in Koreans by a PCR-based method. The frequency of the UGT2B17 deleted alleles was much higher than in other Caucasian and African-American groups which have already been reported. While only up to 10% of Caucasians have zero copies of the gene, up to 74% of Koreans in this study showed that both copies of the gene were deleted. Furthermore, the overall frequency of this dual deletion in female groups was higher than in male groups. However, there was no association between CNV in UGT2B17 and lung cancer. This result suggested that the UGT2B17 deletion allele was not associated with the susceptibility of lung cancers in the Korean group. However, this UGT2B17 CNV polymorphism may be a useful marker for evolutionary analysis among races.

Comparison of Glucuronidating Activity of Two Human cDNAs, UDPGTh1 and UDPGTh2

  • Kim, Soon-Sun;Owens, Ida-S.;Sheen, Yhun-Yhong
    • Archives of Pharmacal Research
    • /
    • v.20 no.5
    • /
    • pp.454-458
    • /
    • 1997
  • Two human liver UDP-glucuronosyltransferase cDNA clones, HLUG25 and UDPGTh2 were previously shown to encode isozymes active in the glucuronidation of hyodeoxycholic acid (HDCA) and certain estrogen derivatives (e.g., estriol and 3,4-catechol estrogens), respectively. in this study we have found that the UDPGTh2-encoded isoform (UDPGTh2) and HLUG25-encoded isoform (UDPGThl) have parallel aglycone specificities. When expressed in COS 1 cells, each isoform metabolized three types of dihydroxy- or trihydroxy-substituted ring structures, including the 3,4-catechol estrogen (4-hydroxyestrone), estriol, 17-epiestriol, and HDCA, but the UDPGTh2 isozyme was 100-fold more efficient than UDPGTh1. UDPGTh1 and UDPGTh2 were 86% identical overall (76 differences out of 528 amino acids), including 55 differences in the first 300 amino acids of the amino terminus, a domain which conferred the substrate specificity. The data indicated that a high level of conservation in the amino terminus was not required for the preservation of substrate selectivity. Analysis of glucuronidation activity encoded by UDPGTh1/UDPGTh2 chimeric cDNA constructed at their common restriction sites, Sac I (codon 297), Nco I (codon 385), and Hha I (codon 469), showed that nine amino acids between residues 385 and 469 were important for catalytic efficiency, suggesting that this region represented a domain which was critical for the catalysis but distinct from that responsible for aglycone-selection. These data indicate that UDPGTh2 is a primary isoform responsible for the detoxification of the bile salt intermediate as well as the active estrogen intermediates.

  • PDF

Metabolite profiles of ginsenosides Rk1 and Rg5 in zebrafish using ultraperformance liquid chromatography/quadrupole-time-of-flight MS

  • Shen, Wenwen;Wei, Yingjie;Tang, Daoquan;Jia, Xiaobin;Chen, Bin
    • Journal of Ginseng Research
    • /
    • v.41 no.1
    • /
    • pp.78-84
    • /
    • 2017
  • Background: In the present study, metabolite profiles of ginsenosides Rk1 and Rg5 from red ginseng or red notoginseng in zebrafish were qualitatively analyzed with ultraperformance liquid chromatography/quadrupole-time-of-flight MS, and the possible metabolic were pathways proposed. Methods: After exposing to zebrafish for 24 h, we determined the metabolites of ginsenosides Rk1 and Rg5. The chromatography was accomplished on UPLC BEH C18 column using a binary gradient elution of 0.1% formic acetonitrile-0.1% formic acid water. The quasimolecular ions of compounds were analyzed in the negative mode. With reference to quasimolecular ions and MS2 spectra, by comparing with reference standards and matching the empirical molecular formula with that of known published compounds, and then the potential structures of metabolites of ginsenosides Rk1 and Rg5 were acquired. Results: Four and seven metabolites of ginsenoside Rk1 and ginsenoside Rg5, respectively, were identified in zebrafish. The mechanisms involved were further deduced to be desugarization, glucuronidation, sulfation, and dehydroxymethylation pathways. Dehydroxylation and loss of C-17 residue were also metabolic pathways of ginsenoside Rg5 in zebrafish. Conclusion: Loss of glucose at position C-3 and glucuronidation at position C-12 in zebrafish were regarded as the primary physiological processes of ginsenosides Rk1 and Rg5.

$\beta$-Glucuronidase Inhibitory Activity of Bromophenols Purified from Grateloupia elliptica

  • Kim, Keun-Young;Choi, Kwan-Sik;Kurihara, Hideyuki;Kim, Sang-Moo
    • Food Science and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.1110-1114
    • /
    • 2008
  • $\beta$-Glucuronidases of intestinal bacteria are capable of retoxifying compounds that have been detoxified by liver glucuronidation, which is one of the most important detoxication processes in the liver. Therefore, this enzyme is known to accelerate colon cancer invasion and metastasis. Two bromophenols, 2,4,6-tribromophenol (I) and 2,4-dibromophenol (II), were purified from the red alga Grateloupia elliptica. $IC_{50}$ values of bromophenol I and II against Escherichia coli $\beta$-glucuronidase were 5.4 and 8.5 mg/mL, respectively. Hence, bromophenols of G. elliptica, a potent $\beta$-glucuronidase inhibitor, can be used as a novel pharmaceutical agent for the prevention and treatment of colon cancer.

Coexistence of Gilbert Syndrome and Hereditary Spherocytosis in a Child Presenting with Extreme Jaundice

  • Lee, Jae Hee;Moon, Kyung Rye
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.17 no.4
    • /
    • pp.266-269
    • /
    • 2014
  • Gilbert syndrome is the most common inherited disorder of bilirubin glucuronidation. It is characterized by intermittent episodes of jaundice in the absence of hepatocellular disease or hemolysis. Hereditary spherocytosis is the most common inherited hemolytic anemia and is characterized by spherical, osmotically fragile erythrocytes that are selectively trapped by the spleen. The patients have variable degrees of anemia, jaundice, and splenomegaly. Hereditary spherocytosis usually leads to mild-to-moderate elevation of serum bilirubin levels. Severe hyperbilirubinemia compared with the degree of hemolysis should be lead to suspicion of additional clinical conditions such as Gilbert syndrome or thalassemia. We present the case of a 12-year-old boy with extreme jaundice and nausea. The diagnosis of hereditary spherocytosis was confirmed by osmotic fragility test results and that of Gilbert syndrome by genetic analysis findings.