• 제목/요약/키워드: Glucose transporter 4 mRNA

검색결과 34건 처리시간 0.033초

db/db 마우스에서 수풍순기환의 혈당강하 활성 및 기전연구 (Blood Glucose Lowering Activity and Mechanism of Supungsungihyan (SPSGH) in db/db Mouse)

  • 이성현;안세영;두호경;정성현
    • Biomolecules & Therapeutics
    • /
    • 제7권4호
    • /
    • pp.335-341
    • /
    • 1999
  • Antidiabetic activity and mechanism of Supungsungihyan(SPSGH) were examined in db/db mice, which is a spontaneously hyperglycemic, hyperinsulinemic and obese animal model. SPSGH and acarbose were administered orally for 4 weeks. Fasting and non-fasting serum glucose, glycated hemoglobin and trig-lyceride of SPSGH treated group were all reduced when compared with those of db/db control group. At 12th week after birth, SPSGH increased an insulin secretion although statistic significance was not seen. Total activities of sucrose, maltase and lactase in SPSGH treated group were not significantly different from those in db/db control. On the other hand, sucrase and maltase activities in acarbose treated groups were increased. Effect of SPSGH on mRNA expression of glucose transporter(GLUT-4) was also examined by RT-PCR and in vitro transcription with co-amplification of rat $\beta$-actin gene as an internal standard. Muscular GLUT-4 mRNA expression in SPSGH treated group was increased significantly. These results may suggest that SPSGH lowered blood glucose ascribing to upregulation of muscular GLUT-4 mRNA expression.

  • PDF

db/db 마우스에서 상백피탕의 혈당강하 활성 및 기전연구 (Blood Glucose Lowering Activity and Mechanism of Sangbackpitang (SBPT) in db/db Mouse)

  • 이성현;안세영;두호경;정성현
    • 약학회지
    • /
    • 제43권6호
    • /
    • pp.818-826
    • /
    • 1999
  • Antidiabetic activity and mechanism of Sangbackpitang (SBPT) was examined in db/db mice, which is a spontaneously hyperglycemic, hyperinsulinemic and obese animal model. SBPT and acarbose were administered orally for 4 weeks. Fasting and non-fasting serum glucose, glycated hemoglobin and triglyceride were all reduced when compared between db/db control group and SBPT treated group. At 12th week after birth, SBPT increased an insulin secretion although statistic significance was not seen. Total activities of sucrase, maltase and lactase in SBPT treated group were all decreased when compared to db/db control. On the other hand, sucrase and maltase activities in acarbose treated groups were increased. Effect of SBPT on mRNA expression of glucose transporter(GLUT-4) was also examined. Quantitation of glucose transporter was performed by RT-PCR and in vitro transcription with co-amplification of rat-action gene as an internal standard. Muscular GLUT-4 mRNA expression in SBPT treated group was increased significantly. These results may suggest that SBPT lowered blood glucose ascribing to inhibition of glycosidase-catalyzed reaction and upregulation of muscular GLUT-4 mRNA expression.

  • PDF

Molecular Cloning and mRNA Expression of the Porcine Insulin-responsive Glucose Transporter (GLUT4)

  • Zuo, Jianjun;Dai, Fawen;Feng, Dingyuan;Cao, Qingyun;Ye, Hui;Dong, Zemin;Xia, Weiguang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제23권5호
    • /
    • pp.640-648
    • /
    • 2010
  • Insulin-responsive glucose transporter 4 (GLUT4) is a member of the glucose transporter family and mainly presents in skeletal muscle and adipose tissue. To clarify the molecular structure of porcine GLUT4, RACE was used to clone its cDNA. Several cDNA clones corresponding to different regions of GLUT4 were obtained by amplifying reverse-transcriptase products of total RNA extracted from Landrace porcine skeletal muscles. Nucleotide sequence analysis of the cDNA clones revealed that porcine GLUT4 cDNA was composed of 2,491 base pairs with a coding region of 509 amino acids. The deduced amino acid sequence was over 90% identical to human, rabbit and cattle GLUT4. The tissue distribution of GLUT4 was also examined by Real-time RT-PCR. The mRNA expression abundance of GLUT4 was heart>liver, skeletal muscle and brain>lung, kidney and intestine. The developmental expression of GLUT4 and insulin receptor (IR) was also examined by Real-time RT-PCR using total RNA extracted from longissimus dorsi (LM), semimembranosus (SM), and semitendinosus (SD) muscle of Landrace at the age of 1, 7, 30, 60 and 90 d. It was shown that there was significant difference in the mRNA expression level of GLUT4 in skeletal muscles of Landrace at different ages (p<0.05). The mRNA expression level of IR also showed significant difference at different ages (p<0.05). The developmental change in the mRNA expression abundance of GLUT4 was similar to that in IR, and both showed a higher level at birth and 30 d than at other ages. However, there was no significant tissue difference in the mRNA expression of GLUT4 or IR (p>0.05). These results showed that the nucleotide sequence of the cDNA clones was highly identical with human, rabbit and cattle GLUT4 and the developmental change of GLUT4 mRNA in skeletal muscles was similar to that of IR, suggesting that porcine GLUT4 might be an insulin-responsive glucose transporter. Moreover, the tissue distribution of GLUT4 mRNA showed that GLUT4 might be an important nutritional transporter in porcine skeletal muscles.

Antidiabetic Activity and Mechanisms of Acarbose in $KKA^{y}$ Mice

  • Kim, Young-Lim;Chung, Sung-Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제5권2호
    • /
    • pp.183-188
    • /
    • 2001
  • To elucidate antidiabetic effect and mechanism(s) of acarbose in a polygenic spontaneous hyperglycemic and hyperinsulinemic diabetic animal model, $KKA^y$ mice, acarbose was administered orally for 4 weeks and effects on body weight, plasma glucose and insulin levels, genetic expressions of intestinal sucrase-isomaltase (SI), sodium-glucose cotransporter (sGLT1) and glucose transporter in quadriceps muscle (GLUT4) were examined in this study. Although no differences in body weight were detected between control and acarbose-treated groups, plasma glucose level in acarbose-treated group was markedly reduced as compared to the control. In the mechanism study, acarbose downregulated the SI and SGLT1 gene expressions, and upregulated the GLUT4 mRNA and protein expressions when compared to the control group. In conclusion, the data obtained strongly implicate that acarbose can prevent the hyperglycemia in $KKA^y$ mice possibly through blocking intestinal glucose absorption by downregulations of SI and sGLT1 mRNA expressions, and upregulation of skeletal muscle GLUT4 mRNA and protein expressions.

  • PDF

상백피탕(桑白皮湯)과 수풍순기환(搜風順氣丸)이 db/db Mice의 당대사(糖代謝)에 미치는 영향(影響) (A Study on the Effect of Sangbaegpitang & Supungsungiwhan on the Glucose Metabolism of db/db Mice)

  • 이성현;안세영;두호경
    • 대한한의학회지
    • /
    • 제20권2호
    • /
    • pp.108-120
    • /
    • 1999
  • In this study, body weight levels of glucose, insulin and triglyceride in blood and glucosidase activity of the small intestine were investigated to determine the effect of Sangbaegpitang and Supungsungiwhan on the glucose metabolism of db/db mice. The GLUT4 mRNA of muscle tissue and the Acetyl CoA Carboxylase and the activation rate of GLUT2 mRNA of liver tissue were measured by the reverse transcription-polymerase chain reaction method and by the vitro transcription. The results were obtained as follows: 1. In the Sangbaegpitang administration group, (1) The level of triglyceride was decreased significantly and the glucosidase activity of the small intestine was inhibited remarkably, (2) The amounts of the GLUT4 mRNA in muscle tissue and Acetyl CoA Carboxylase mRNA in liver tissue were increased significantly. (3) Though glucose level in both fasting and non-fasting, were decreased and the insulin level in blood was increased, the results showed no statistical significance. 2. In the Supungsungiwhan administration group, (1) The levels of glucose and triglyceride were decreased significantly in the blood of non-fasting animals. (2) The glucosidase activity of small intestine was inhibited markedly and the amounts of GLUT4 mRNA of muscle tissue and GLUT2 mRNA of liver tissue were increased significantly. (3) The glucose levels in the fasting group were reduced, while insulin level was increased but showed no statistical significance, Based on the above results, our conclusions are as follows: Sangbaegpitang & Supungsungiwhan are thought to be capable of inhibiting the activity glucosidase, the enzyme which influences carbohydrate metabolism in the small intestine of db/db mice(the experimental diabetic model) and delaying the absorption of carbohydrate, thus proving effective on inhibiting the increase of non-fasting glucose level effectively. Futhermore Sangbaegpitang and Supungsungiwhan are though: to be capable of preventing the composition of free fatty acids by restoring the production of GLUT4 mRNA of muscle tissues and GLUT2 mRNA of liver tissues. Those results suggests that above prescriptions can be applied to non-insulin dependent diabetes mellitus in order to improve insulin resistance.

  • PDF

생쥐 지방조직에서의 아디포넥틴과 포도당수송체-4 유전자 발현의 상관관계 (Correlation of Gene Expression between Adiponectin and Glucose Transporter 4 in Mouse Adipose Tissue)

  • 이용호
    • 생명과학회지
    • /
    • 제24권8호
    • /
    • pp.895-902
    • /
    • 2014
  • 아디포넥틴은 이미 합성된 GLUT4의 translocation 증가를 통해 포도당의 세포내 유입을 촉진하며 인슐린 민감도를 증가시키는 것으로 알려져 있다. 본 연구에서는 장기간(6주령부터 16, 26, 36, 47, 및 77주령까지)의 고지방식이(HFD)를 섭취한 비만 C57BL/6 생쥐와, 칼로리제한(CR) 또는 thiazolidinedione (TZD) 섭취에 의해 인슐린 민감성이 회복된 생쥐들로부터 지방조직을 적출하여 아디포넥틴과 GLUT4 의 mRNA 발현의 변화를 조사하였으며, 선형회귀분석(linear regression analysis)을 통해 아디포넥틴과 GLUT4 유전자 발현량 사이의 상관관계를 평가하여 아디포넥틴이 GLUT4 유전자 발현의 전사단계에서도 영향을 미치는지의 가능성을 확인하고자 하였다. 지방조직에서의 유전자 발현량은 TaqMan probe를 이용한 real-time PCR로 정량되었다. 실험결과, 지방조직에서의 아디포넥틴 mRNA발현량은 여러 조건의 생쥐 그룹들 사이에 유의한 변화가 나타나지 않았지만, GLUT4의 유전자 발현량은 HFD군에서는 감소하고, CR군(p<0.05)과 TZD군(p=0.007)에서는 유의하게 증가하는 변화가 확인되었다. 또한, 아디포넥틴과 GLUT4 mRNA 발현량 사이에는 유의한 상관관계를 나타내고 있음이 확인되었다. ND군(p<0.0001), HFD군 p<0.0001), 또는 각각의 주령과 식이별 소그룹, 그리고 CR군(p=0.002) 에서도 두 유전자간의 발현량이 유의하게 연관되어 있었다. 그러나 TZD군(p=0.73)의 생쥐에서는 그 연관성이 사라짐을 관찰하였다. 이는 TZD가 아디포넥틴 유전자 발현에는 영향을 미치지 않지만, GLUT4유전자 발현은 촉진하기에 두 유전자 사이에 유의하지 않은 상관관계로 변화되었음을 시사한다. 이들 결과는 아디포넥틴과 GLUT4의 유전자 발현은 강하게 연관되어 있으며, 두 유전자 발현 조절에 대한 공통적인 작용기전의 존재 가능성 또는 아디포넥틴이 GLUT4 translocation뿐만 아니라 GLUT4의 유전자 발현에도 직접적으로 작용하고 있음을 시사한다.

사람 폐암 세포주에서 포도당 운반 단백 유전자의 발현 (Glucose Transporter Gene Expression in Human Lung Cancer Cell Lines)

  • 김우진;임재준;이재호;유철규;정희순;한성구;정준기;심영수;김영환
    • Tuberculosis and Respiratory Diseases
    • /
    • 제45권4호
    • /
    • pp.760-765
    • /
    • 1998
  • 연구배경: 암세포에서 포도당의 유입이 증가되어 있다는 사실이 오래 전부터 알려져 왔고 이런 현상을 이용하여 FDG-PET 영상이 암의 진단에 이용되고 있다. 그러나, 암세포에서 포도당 유입이 증가하는 기전에 대해서는 모르고 있다. 최근, 여러 연구에서 소화기계의 악성종양과 두경부종양에서 포도당 운반체의 mRNA 의 존재가 증명되었고, 포도당 운반체가 암세포에서의 포도당 유입 증가와 관련이 있을 가능성을 시사하였다. 폐암에서도 포도당대사가 항진되어 있다. 저자등은 폐암에서의 포도당 유입이 증가하는 기전에 대해 알아 보기 위하여 사람 폐암세포주에서 포도당 mRNA의 발현여부를 확인하였다. 방 법: 15종의 사람 폐암 세포주와 불멸화시킨 기관지 상피세포주에서 total RNA를 추출하였다. $20{\mu}g$의 total RNA를 전기영동시킨후, 포도당 운반체 1형과 3 형에 대한 cDNA를 probe로 Northern blot analysis를 시행하였다. 결 과: 14종의 사람 폐암 세포주중에서 13종에서 포도당 운반체 1형의 mRNA 발현을 확인하였고, 14종의 사람 폐암 세포주중에서 10종에서 포도당 운반체 3형의 mRNA 발현을 확인하였다. 불멸화시킨 기관지 상피세포주의 포도당 운반체 1형의 mRNA 발현을 확인할 수 있었고 3형의 mRNA 발현은 확인할 수 없었다. 결 론: 폐암에서 포도당 대사의 증가는 포도당 운반체 1형과 3형의 발현과 관련이 있을 것으로 사료된다.

  • PDF

Decreased GLUT 4 mRNA Levels did not Related with Degree of Hyperglycemia in Skeletal Muscles of Streptozotocin-induced Diabetic Rats

  • Park, So-Young;Kim, Jong-Yeon;Kim, Yong-Woon;Lee, Suck-Kang
    • The Korean Journal of Physiology
    • /
    • 제30권2호
    • /
    • pp.231-236
    • /
    • 1996
  • In our previous study (Kim et al, 1991), GLUT 4 protein content correlated negatively with plasma glucose levels in skeletal muscles of STZ-induced diabetic rats. Thus, in this study, to confirm whether expression of GLUT 4 correlate negatively with degree of hyperglycemia, we measured levels of GLUT 4 mRNA in red and white gastrocnemius muscles in STZ-induced mild and severe diabetic rats. Rats were randomly assigned to control, mild, and severe diabetic groups, and the diabetes was induced by intraperitoneal administration of STZ. The experiment was carried out 10 days after STZ administration. Gastrocnemius red and white muscles were used fur the measurement of GLUT 4 expression. Plasma glucose levels of mild and severe diabetic rats were increased compared to control rats (control, mild, and severe diabetes; $6.4{\pm}0.32,\;9.4{\pm}0.68,\;and\;22.0{\pm}0.58$ mmol/L, respectively). Plasma insulin levels of mild and severe diabetic rats were decreased compared to control rats (control, mild, and severe diabetes; $198{\pm}37,\;l14{\pm}14,\;and\;90{\pm}15$ pmol/L, respectively). GLUT 4 mRNA levels of gastrocnemius red muscles in mild and severe diabetic rats were decreased compared to control rats ($64{\pm}1.2%\;and\;71{\pm}2.0%$ of control, respectively), but GLUT 4 mRNA levels in gastrocnemius white muscles were unaltered in diabetic rats. In summary, GLUT 4 mRNA levels were decreased in STZ-induced diabetic rats but did not correlated negatively with degree of hyperglycemia, and this result suggest that the regulatory mechanisms of decreased GLUT 4 mRNA levels are hypoinsulinemia and/or other metabolic factor but not hyperglycemia. And regulation of GLUT 4 expression in STZ-induced diabetes between red and white enriched skeletal muscles may be related to a fiber specific gene regulatory mechanism.

  • PDF

Expressional Analysis of Glucose Transporter Isoforms in the Efferent Ductules of Male Sprague Dawley Rat during Postnatal Development

  • Seo, Hee-Jung;Son, Chan-Wok;Lee, Ki-Ho
    • Reproductive and Developmental Biology
    • /
    • 제33권4호
    • /
    • pp.211-216
    • /
    • 2009
  • A cell frequently utilizes glucose as a fuel of energy and a major substrate of lipid and protein syntheses. A regulation of glucose movement into and out of the cells is precisely controlled by cooperative works of passive and sodium-dependent active processes. At least 13 glucose cotransporter (Slc2a, GLUT) isoforms involve in passive movement of glucose in cells. The efferent ductules (EDs) play in a number of important functions for maintenance of male fertility. In the present study, using real-time PCR analysis, we determined gene expression of five Slc2a isoforms in the EDs. In addition, we compared expression levels of these Slc2a isoforms according to postnatal development ages, 1 week, 2 weeks, 1 month, and 3 months. Results from the current study showed that expression of Slc2a1, Slc2a3, and Slc2a5 mRNAs reached the highest levels at 1 month of age, followed by a transient decrease at 3 months of age. In addition, the level of Slc2a4 mRNA reminded at steady until 1 month of age and was significantly reduced at 3 months of age, whereas the highest level of Slc2a 8 mRNA was detected at 2 weeks of age. Data from the present study indicate a differential expression of various Slc2a isoforms in the ED according to postnatal ages. Thus, it is believed that glucose movement through the epithelial cells in the ED would be regulated by the coordinated manner among Slc2a isoforms expressed at a given age.

Role of Dgat2 in Glucose Uptake and Fatty Acid Metabolism in C2C12 Skeletal Myotubes

  • So Young Bu
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권12호
    • /
    • pp.1563-1575
    • /
    • 2023
  • Acyl-coenzyme A (CoA):diacylglycerol acyltransferase 2 (DGAT2) catalyzes the last stage of triacylglycerol (TAG) synthesis, a process that forms ester bonds with diacylglycerols (DAG) and fatty acyl-CoA substrates. The enzymatic role of Dgat2 has been studied in various biological species. Still, the full description of how Dgat2 channels fatty acids in skeletal myocytes and the consequence thereof in glucose uptake have yet to be well established. Therefore, this study explored the mediating role of Dgat2 in glucose uptake and fatty acid partitioning under short interfering ribonucleic acid (siRNA)-mediated Dgat2 knockdown conditions. Cells transfected with Dgat2 siRNA downregulated glucose transporter type 4 (Glut4) messenger RNA (mRNA) expression and decreased the cellular uptake of [1-14C]-labeled 2-deoxyglucose up to 24.3% (p < 0.05). Suppression of Dgat2 deteriorated insulin-induced Akt phosphorylation. Dgat2 siRNA reduced [1-14C]-labeled oleic acid incorporation into TAG, but increased the level of [1-14C]-labeled free fatty acids at 3 h after initial fatty acid loading. In an experiment of chasing radioisotope-labeled fatty acids, Dgat2 suppression augmented the level of cellular free fatty acids. It decreased the level of re-esterification of free fatty acids to TAG by 67.6% during the chase period, and the remaining pulses of phospholipids and cholesteryl esters were decreased by 34.5% and 61%, respectively. Incorporating labeled fatty acids into beta-oxidation products increased in Dgat2 siRNA transfected cells without gene expression involving fatty acid oxidation. These results indicate that Dgat2 has regulatory function in glucose uptake, possibly through the reaction of TAG with endogenously released or recycled fatty acids.