• 제목/요약/키워드: Glucose transporter 4

검색결과 131건 처리시간 0.026초

db/db 마우스에서 상백피탕의 혈당강하 활성 및 기전연구 (Blood Glucose Lowering Activity and Mechanism of Sangbackpitang (SBPT) in db/db Mouse)

  • 이성현;안세영;두호경;정성현
    • 약학회지
    • /
    • 제43권6호
    • /
    • pp.818-826
    • /
    • 1999
  • Antidiabetic activity and mechanism of Sangbackpitang (SBPT) was examined in db/db mice, which is a spontaneously hyperglycemic, hyperinsulinemic and obese animal model. SBPT and acarbose were administered orally for 4 weeks. Fasting and non-fasting serum glucose, glycated hemoglobin and triglyceride were all reduced when compared between db/db control group and SBPT treated group. At 12th week after birth, SBPT increased an insulin secretion although statistic significance was not seen. Total activities of sucrase, maltase and lactase in SBPT treated group were all decreased when compared to db/db control. On the other hand, sucrase and maltase activities in acarbose treated groups were increased. Effect of SBPT on mRNA expression of glucose transporter(GLUT-4) was also examined. Quantitation of glucose transporter was performed by RT-PCR and in vitro transcription with co-amplification of rat-action gene as an internal standard. Muscular GLUT-4 mRNA expression in SBPT treated group was increased significantly. These results may suggest that SBPT lowered blood glucose ascribing to inhibition of glycosidase-catalyzed reaction and upregulation of muscular GLUT-4 mRNA expression.

  • PDF

Tryptic Digestion and Cytochalasin B Binding Assay of the Human HepG2-Type Glucose Transporter Expressed in Spodoptera frugiperda Clone 21-AE Cells

  • 이종기
    • 대한의생명과학회지
    • /
    • 제11권1호
    • /
    • pp.57-61
    • /
    • 2005
  • The number of sites at which a protein can be readily cleaved by a proteolytic enzyme is greatly influenced by its three-dimensional structure. For native, properly-folded proteins both the rate of cleavage and number of sites at which cleavage takes place are usually much less than for the denatured protein. In order to compare the tertiary structure of recombinant HepG2 type glucose transporter with that of its native counterpart in the erythrocyte, the pattern of tryptic cleavage of the protein expressed in insect cell membranes was therefore examined. After 30 minutes digestion, a fragment of approximate Mr 19,000-21,000 was generated. In addition to this, there were two less intensely stained fragments of apparent Mr 28,000 and 17,000. The pattern of labelling was similar up to 2 hours of digestion. However, the fragments of Mr 19,000-21,000 and Mr 17,000 were no longer detectable after 4 hours digestion. The observation of a very similar pattern of fragments yielded by tryptic digestion of the HepG2 type transporter expressed in insect cells suggests that the recombinant protein exhibits a tertiary structure similar if not identical to that of its human counterpart. Also, the endogenous sugar transporter(s) present in Sf21 cells did not bind cytochalasin B, the potent transporter inhibitor. Therefore, the baculovirus/Spodoptera frugiperda (Sf) cell expression system could be very useful for production of large amounts of human glucose transporters, heterologously.

  • PDF

Photoaffinity Labelling of the Human Erythrocyte Glucose Transporters Expressed in Spodoptera frugiperda Clone 9 (Sf9) Cells

  • Lee, Chong-Kee
    • 대한의생명과학회지
    • /
    • 제8권4호
    • /
    • pp.211-215
    • /
    • 2002
  • The baculovirus/Sf9 cell expression can be employed as a powerful system for producing large amounts of the human erythrocyte glucose transporter, GLUT1 heterologously In order to exploit the system further, it is necessary to develop a convenient method for demonstrating that the transporter expressed in insect cells is biologically active. To achieve this, we have expressed the human CLUT1 in insect cells and photolabelled the expressed protein with [$^3$H] cytochalasin B, a potent inhibitor of the human erythrocyte glucose transporter. Subsequently, the labelled proteins were analysed by SDS-polyacrylamide gel electrophoresis (SDS-PAGE). Membranes labelled with [$^3$H] cytochalasln B in the presence of L-Glucose yielded a single sharp peak of labelling of apparent $M_r$ 45,000 on SDS/polyacrylamide gels. The mobility of this peak corresponded exactly to that of the band detected by anti-glucose transporter antibodies on Western blots of membranes prepared from insect cells infected with recombinant virus. In addition, the sharpness of the radioactive peak provides further evidence for the conclusion that the expressed protein is much less heavily and heterogeneously glycosylated than its erythrocyte counterpart. No peak of labelling was seen with the membranes prepared from non-infected Sf9 cells. Furthermore, the incorporation of label into this peak was completely inhibited by the presence of 500 mM-D-Glucose during tile photolabelling procedure, showing the stereoselectivity of the labelling. These evidences clearly show that human glucose transporter expressed in insect cells exhibits native-like biological activity, and that photolabelling with [$^3$H] cytochalasin B can be a convenient means for analysing the biological activity of the transport protein expressed in insect cells.

  • PDF

db/db 마우스에서 수풍순기환의 혈당강하 활성 및 기전연구 (Blood Glucose Lowering Activity and Mechanism of Supungsungihyan (SPSGH) in db/db Mouse)

  • 이성현;안세영;두호경;정성현
    • Biomolecules & Therapeutics
    • /
    • 제7권4호
    • /
    • pp.335-341
    • /
    • 1999
  • Antidiabetic activity and mechanism of Supungsungihyan(SPSGH) were examined in db/db mice, which is a spontaneously hyperglycemic, hyperinsulinemic and obese animal model. SPSGH and acarbose were administered orally for 4 weeks. Fasting and non-fasting serum glucose, glycated hemoglobin and trig-lyceride of SPSGH treated group were all reduced when compared with those of db/db control group. At 12th week after birth, SPSGH increased an insulin secretion although statistic significance was not seen. Total activities of sucrose, maltase and lactase in SPSGH treated group were not significantly different from those in db/db control. On the other hand, sucrase and maltase activities in acarbose treated groups were increased. Effect of SPSGH on mRNA expression of glucose transporter(GLUT-4) was also examined by RT-PCR and in vitro transcription with co-amplification of rat $\beta$-actin gene as an internal standard. Muscular GLUT-4 mRNA expression in SPSGH treated group was increased significantly. These results may suggest that SPSGH lowered blood glucose ascribing to upregulation of muscular GLUT-4 mRNA expression.

  • PDF

Functional Assessments of Spodpotera Cell-expressed Human Erythrocyte-type Glucose Transport Protein with a Site-directed Mutagenesis

  • 이종기
    • 대한의생명과학회지
    • /
    • 제14권2호
    • /
    • pp.119-122
    • /
    • 2008
  • The baculovirus/insect cell expression system is of great value in the study of structure-function relationships in mammalian glucose-transport proteins by site-directed mutagenesis and for the large-scale production of these proteins for mechanistic and biochemical studies. In order to exploit this, the effects of substitution at the highly conserved residue glutamine 282 of the human erythrocyte-type glucose transporter have been examined by in vitro site-directed mutagenesis. The modified human transport protein has been expressed in Spodoptera frugiperda 21 cells by using the recombinant baculovirus AcNPV-GTL. To assess the functional integrity of the expressed transporter, measurements of the transport inhibitor cytochalasin B binding were performed, involving the membranes prepared from 4 days post infection with no virus, with wild-type virus or AcNPV-GTL virus. Data obtained showed that there was little or no D-glucose-inhibitable binding in cells infected with the wild type or no virus. Only the recombinant virus infected cells exhibited specific binding, which is inhibitable by D- but not by L-glucose. However, there was a notable reduction in the affinity for the potent inhibitor cytochalasin B when binding measurements of AcNPV-GTL were compared with those of AcNPV-GT, which has no substitution. It is thus suggested that although the modified and unmodified human transporters differed slightly in their affinity for cytochalasin B, the glutamine substitution did not interfere the heterologous expression of the human transporter in the insect cells.

  • PDF

The Effect of Glucose and Glucose Transporter on Regulation of Lactation in Dairy Cow

  • Heo, Young-Tae;Park, Joung-Jun;Song, Hyuk
    • Reproductive and Developmental Biology
    • /
    • 제39권4호
    • /
    • pp.97-104
    • /
    • 2015
  • Glucose is universal and essential fuel of energy metabolism and in the synthesis pathways of all mammalian cells. Glucose is the one of the major precursors of lactose synthesis using glycolysis result in producing milk fat and protein. During the milk fat synthesis, lipoprotein lipase (LPL) and CD36 are required for glucose uptake. Various morecules such as acyl-CoA synthetase 1 (ACSL1) activity of acetyl-CoA synthetase 2 (ACSS2), ACACA, FASN AGPAT6, GPAM, LPIN1 are closely related with milk fat synthesis. Additionally, glucose plays a major role for synthesizing lactose. Activations of lactose synthesize enzymes such as membranebound enzyme, beta-1,4-galactosyl transferase (B4GALT), glucose-6-phosphate dehydrogenase (G6PD) are changed by concentration of glucose in blood resulting change of amount of lactose production. Glucose transporters are a wide group of membrane proteins that facilitate the transport of glucose over a plasma membrane. There are 2 types of glucose transporters which consisted facilitative glucose transporters (GLUT); and sodium-dependent transport, mediated by the Na+/glucose cotransporters (SGLT). Among them, GLUT1, GLUT8, GLUT12, SGLT1, SGLT2 are main glucose transporters which involved in mammary gland development and milk synthesis. However, more studies are required for revealing clear mechanism and function of other unknown genes and transporters. Therefore, understanding of the mechanisms of glucose usage and its regulation in mammary gland is very essential for enhancing the glucose utilization in the mammary gland and improving dairy productivity and efficiency.

Molecular Cloning and mRNA Expression of the Porcine Insulin-responsive Glucose Transporter (GLUT4)

  • Zuo, Jianjun;Dai, Fawen;Feng, Dingyuan;Cao, Qingyun;Ye, Hui;Dong, Zemin;Xia, Weiguang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제23권5호
    • /
    • pp.640-648
    • /
    • 2010
  • Insulin-responsive glucose transporter 4 (GLUT4) is a member of the glucose transporter family and mainly presents in skeletal muscle and adipose tissue. To clarify the molecular structure of porcine GLUT4, RACE was used to clone its cDNA. Several cDNA clones corresponding to different regions of GLUT4 were obtained by amplifying reverse-transcriptase products of total RNA extracted from Landrace porcine skeletal muscles. Nucleotide sequence analysis of the cDNA clones revealed that porcine GLUT4 cDNA was composed of 2,491 base pairs with a coding region of 509 amino acids. The deduced amino acid sequence was over 90% identical to human, rabbit and cattle GLUT4. The tissue distribution of GLUT4 was also examined by Real-time RT-PCR. The mRNA expression abundance of GLUT4 was heart>liver, skeletal muscle and brain>lung, kidney and intestine. The developmental expression of GLUT4 and insulin receptor (IR) was also examined by Real-time RT-PCR using total RNA extracted from longissimus dorsi (LM), semimembranosus (SM), and semitendinosus (SD) muscle of Landrace at the age of 1, 7, 30, 60 and 90 d. It was shown that there was significant difference in the mRNA expression level of GLUT4 in skeletal muscles of Landrace at different ages (p<0.05). The mRNA expression level of IR also showed significant difference at different ages (p<0.05). The developmental change in the mRNA expression abundance of GLUT4 was similar to that in IR, and both showed a higher level at birth and 30 d than at other ages. However, there was no significant tissue difference in the mRNA expression of GLUT4 or IR (p>0.05). These results showed that the nucleotide sequence of the cDNA clones was highly identical with human, rabbit and cattle GLUT4 and the developmental change of GLUT4 mRNA in skeletal muscles was similar to that of IR, suggesting that porcine GLUT4 might be an insulin-responsive glucose transporter. Moreover, the tissue distribution of GLUT4 mRNA showed that GLUT4 might be an important nutritional transporter in porcine skeletal muscles.

A Probing of Inhibition Effect on Specific Interaction Between Glucose Ligand Carrying Polymer and HepG2 Cells

  • Park, Keun-Hong;Park, Sang-Hyug;Lee, Hyun-Jung;Min, Byoung-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권3호
    • /
    • pp.450-455
    • /
    • 2004
  • A reducing glucose-carrying polymer, called poly [3-O-(4'-vinylbenzyl)-D-glucose](PVG), was interacted with HepG2 cells including a type-l glucose transporter (GLUT-1) on the cell membrane. The cooperative interaction between a number of GLUT-1s and a number of reducing 3-O-methyl-D-glucose moieties on the PVG polymer chain was found to be responsible for the increase in the interaction with HepG2 cells. The affinity between the cells and the PVG was studied using RITC-labeled glycopolymers. The specific interaction between the GLUT-1 on HepG2 cells and the PVG polymer carrying reducing glucose moieties was suppressed by the inhibitors, phloretin, phloridzin, and cytochalasin B. Direct observation by confocal laser microscopy with the use of RITC-labeled PVG and pretreatment of HepG2 cells with the inhibitors demonstrated that the cells interacted with the soluble form of the PVG polymer via GLUT-1, while fluorescence labeling of the cell surface was prevented after pretreatment with the inhibitors of GLUT-1.

Effect of Ganglioside $G_{M3}$ on the Erythrocyte Glucose Transporter (GLUT1): Conformational Changes Measured by Steady-State and Time-Resolved Fluorescence Spectroscopy

  • Yoon, Hae-Jung;Lee, Min-Yung;Jhon, GiI-Ja
    • BMB Reports
    • /
    • 제30권4호
    • /
    • pp.240-245
    • /
    • 1997
  • Interactions between ganglioside $G_{M3}$ and glucose transporter, GLUT1 were studied by measuring the effect of $G_{M3}$ on steady-state and time-resolved fluorescence of purified GLUT1 in synthetic lipids and on the 3-O-methylglucose uptake by human erythrocytes. The intrinsic tryptophan fluorescence showed a GLUT 1 emission maximum of 335 nm, and increased in the presence of $G_{M3}$ by 12% without shifting the emission maximum, The fluorescence lifetimes of intrinsic tryptophan on GLUT1 consisted of a long component of 7.8 ns and a short component of 2,3 ns and $G_{M3}$ increased both lifetime components. Lifetime components were quenched by acrylamide and KI. Acrylarnide-mduced quenching of long-lifetime components was partly recovered by $G_{M3}$ However. KI-induccd quenching of short- and long-lifetime components was not rescued by $G_{M3}$. The anisotropy of 1.6-diphenyl-1.3.5-hexatriene (DPH)-probed dimyristoylphosphatidylcholine (DMPC) model membrane was also increased with $G_{M3}$ incorporation, The transport rate of 3-O-methylglucose increased by 20% with $G_{M3}$ incorporation on the erythrocytes, Therefore, $G_{M3}$ altered the environment of lipid membrane and induced the conformational change of GLUT1.

  • PDF

Chicken serum uric acid level is regulated by glucose transporter 9

  • Ding, Xuedong;Peng, Chenglu;Li, Siting;Li, Manman;Li, Xinlu;Wang, Zhi;Li, Yu;Wang, Xichun;Li, Jinchun;Wu, Jinjie
    • Animal Bioscience
    • /
    • 제34권4호
    • /
    • pp.670-679
    • /
    • 2021
  • Objective: Glucose transporter 9 (GLUT9) is a uric acid transporter that is associated with uric absorption in mice and humans; but it is unknown whether GLUT9 involves in chicken uric acid regulation. This experiment aimed to investigate the chicken GLUT9 expression and serum uric acid (SUA) level. Methods: Sixty chickens were divided into 4 groups (n = 15): a control group (NC); a sulfonamide-treated group (SD) supplemented with sulfamonomethoxine sodium via drinking water (8 mg/L); a fishmeal group (FM) supplemented with 16% fishmeal in diet; and a uric acid-injection group (IU), where uric acid (250 mg/kg) was intraperitoneally injected once a day. The serum was collected weekly to detect the SUA level. Liver, kidney, jejunum, and ileum tissues were collected to detect the GLUT9 mRNA and protein expression. Results: The results showed in the SD and IU groups, the SUA level increased and GLUT9 expression increased in the liver, but decreased in the kidney, jejunum, and ileum. In the FM group, the SUA level decreased slightly and GLUT9 expression increased in the kidney, but decreased in the liver, jejunum, and ileum. Correlation analysis revealed that liver GLUT9 expression correlated positively, and renal GLUT9 expression correlated negatively with the SUA level. Conclusion: These results demonstrate that there may be a feedback regulation of GLUT9 in the chicken liver and kidney to maintain the SUA balance; however, the underlying mechanism needs to be investigated in future studies.