• Title/Summary/Keyword: Glucose transporter 1

Search Result 153, Processing Time 0.033 seconds

Phenylalanine and valine differentially stimulate milk protein synthetic and energy-mediated pathway in immortalized bovine mammary epithelial cells

  • Kim, Jungeun;Lee, Jeong-Eun;Lee, Jae-Sung;Park, Jin-Seung;Moon, Jun-Ok;Lee, Hong-Gu
    • Journal of Animal Science and Technology
    • /
    • v.62 no.2
    • /
    • pp.263-275
    • /
    • 2020
  • Studies on promoting milk protein yield by supplementation of amino acids have been globally conducted. Nevertheless, there is a lack of knowledge of what pathways affected by individual amino acid in mammary epithelial cells that produce milk in practice. Phenylalanine (PHE) and valine (VAL) are essential amino acids for dairy cows, however, researches on mammary cell levels are still lacking. Thus, the aim of this study was conducted to evaluate the effects of PHE and VAL on milk protein synthesis-related and energy-mediated cellular signaling in vitro using immortalized bovine mammary epithelial (MAC-T) cells. To investigate the effects of PHE and VAL, the following concentrations were added to treatment medium: 0, 0.3, 0.6, 0.9, 1.2, and 1.5 mM. The addition of PHE or VAL did not adversely affect cell viability compared to control group. The concentrations of cultured medium reached its maximum at 0.9 mM PHE and 0.6 mM VAL (p < 0.05). Therefore, aforementioned 2 treatments were analyzed for proteomics. Glucose transporter 1 and mammalian target of rapamycin mRNA expression levels were up-regulated by PHE (166% and 138%, respectively) (p < 0.05). Meanwhile, sodium-dependent neutral amino acids transporter type 2 (ASCT2) and β-casein were up-regulated by VAL (173% in ASCT2, 238% in and 218% in β-casein) (p < 0.05). A total of 134, 142, and 133 proteins were detected in control group, PHE treated group, and VAL treated group, respectively. Among significantly fold-changed proteins, proteins involved in translation initiation or energy metabolism were detected, however, expressed differentially between PHE and VAL. Thus, pathway analysis showed different stimulatory effects on energy metabolism and transcriptional pathways. Collectively, these results showed different stimulatory effects of PHE and VAL on protein synthesis-related and energy-mediated cellular signaling in MAC-T cells.

Effects of Engineered Saccharomyces cerevisiae Fermenting Cellobiose through Low-Energy-Consuming Phosphorolytic Pathway in Simultaneous Saccharification and Fermentation

  • Choi, Hyo-Jin;Jin, Yong-Su;Lee, Won-Heong
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.1
    • /
    • pp.117-125
    • /
    • 2022
  • Until recently, four types of cellobiose-fermenting Saccharomyces cerevisiae strains have been developed by introduction of a cellobiose metabolic pathway based on either intracellular β-glucosidase (GH1-1) or cellobiose phosphorylase (CBP), along with either an energy-consuming active cellodextrin transporter (CDT-1) or a non-energy-consuming passive cellodextrin facilitator (CDT-2). In this study, the ethanol production performance of two cellobiose-fermenting S. cerevisiae strains expressing mutant CDT-2 (N306I) with GH1-1 or CBP were compared with two cellobiose-fermenting S. cerevisiae strains expressing mutant CDT-1 (F213L) with GH1-1 or CBP in the simultaneous saccharification and fermentation (SSF) of cellulose under various conditions. It was found that, regardless of the SSF conditions, the phosphorolytic cellobiose-fermenting S. cerevisiae expressing mutant CDT-2 with CBP showed the best ethanol production among the four strains. In addition, during SSF contaminated by lactic acid bacteria, the phosphorolytic cellobiose-fermenting S. cerevisiae expressing mutant CDT-2 with CBP showed the highest ethanol production and the lowest lactate formation compared with those of other strains, such as the hydrolytic cellobiose-fermenting S. cerevisiae expressing mutant CDT-1 with GH1-1, and the glucose-fermenting S. cerevisiae with extracellular β-glucosidase. These results suggest that the cellobiose-fermenting yeast strain exhibiting low energy consumption can enhance the efficiency of the SSF of cellulosic biomass.

Effect of Lactobacillus acidophilus NS1 on the Hepatic Glycogen Contents in High-Fat Diet-Fed Mice (고지방식이 마우스의 간에서 Lactobacillus acidophilus NS1에 의한 글리코겐 함량 조절 효과)

  • Yang, Garam;Kim, Soyoung;Kim, Eungseok
    • Journal of Dairy Science and Biotechnology
    • /
    • v.39 no.2
    • /
    • pp.78-85
    • /
    • 2021
  • Previously, we showed that oral administration of probiotics, Lactobacillus acidophilus NS1 (LNS1), improved insulin sensitivity in high-fat-diet-fed mice (HFD mice). Furthermore, LNS1-conditioned media (LNS1-CM) reduced HNF4α transcription activity and the expression of phosphoenol pyruvate carboxykinase (PEPCK), a key enzyme in gluconeogenesis in HepG2 cells. In this study, we demonstrated that LNS1 administration increased the expression of glycosyltransferase 2 (GYS2) and glucose transporter 2 (GLUT2), while reduced the expression of glucose-6-phosphatase (G6PC) expression in liver of HFD mice. Furthermore, LNS1 suppressed hepatic expression of glucokinase regulatory unit (GCKR) in HFD mice without changing the mRNA levels of glucokinase (GCK), suggesting that LNS1 may inhibit nuclear GCK activity. Consistently, addition of LNS1-CM to HepG2 cells increased the mRNA levels of GYS2 and GLUT2 with reduced mRNA levels of G6PC and GCKR. Moreover, hepatic glycogen contents were increased in HFD mice upon administration of LNS1. Together, these results suggest that LNS1 facilitates glycogen accumulation in liver by regulating the expression of genes involved in glycogen metabolism, contributing to improved insulin sensitivity in the HFD mice.

Lupeol Improves TNF-α Induced Insulin Resistance by Downregulating the Serine Phosphorylation of Insulin Receptor Substrate 1 in 3T3-L1 Adipocytes (3T3-L1 지방세포에서 루페올의 IRS-1의 인산화 조절을 통한 TNF-α 유도 인슐린 저항성 개선 효과)

  • Hyun Ah Lee;Ji Sook Han
    • Journal of Life Science
    • /
    • v.33 no.11
    • /
    • pp.859-867
    • /
    • 2023
  • Lupeol is a type of pentacyclic triterpene that has been reported to have therapeutic effects for treating many diseases; however, its effect on insulin resistance is unclear clear. This study examined the inhibitory effect of lupeol on the serine phosphorylation of insulin receptor substrate-1 in insulin resistance-induced 3T3-L1 adipocytes. 3T3-L1 cells were cultured and treated with tumor necrosis factor-α (TNF-α) for 24 hours to induce insulin resistance. Cells treated with different concentrations of lupeol (15 μM or 30 μM) or 100 nM of rosiglitazone were incubated. Then, lysed cells underwent western blotting. Lupeol exhibited a positive effect on the negative regulator of insulin signaling and inflammation-activated protein kinase caused by TNF-α in adipocytes. Lupeol inhibited the activation of protein tyrosine phosphatase-1B (PTP-1B)-a negative regulator of insulin signaling-and c-Jun N-terminal kinase (JNK); it was also an inhibitor of nuclear factor kappa-B kinase (IKK) and inflammation-activated protein kinases. In addition, Lupeol downregulated serine phosphorylation and upregulated tyrosine phosphorylation in insulin receptor substrate-1. Then, the downregulated phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway was activated, the translocation of glucose transporter type 4 was stimulated to the cell membrane, and intracellular glucose uptake increased in the insulin resistance-induced 3T3-L1 adipocytes. Lupeol may improve TNF-α-induced insulin resistance by downregulating the serine phosphorylation of insulin receptor substrate 1 by inhibiting negative regulators of insulin signaling and inflammation-activated protein kinases in 3T3-L1 adipocytes.

Overexpression of CD44 Standard Isoform Upregulates HIF-1α Signaling in Hypoxic Breast Cancer Cells

  • Ryu, Dayoung;Ryoo, In-geun;Kwak, Mi-Kyoung
    • Biomolecules & Therapeutics
    • /
    • v.26 no.5
    • /
    • pp.487-493
    • /
    • 2018
  • Cluster of differentiation 44 (CD44), a cell surface receptor for hyaluronic acid (HA), is involved in aggressive cancer phenotypes. Herein, we investigated the role of the CD44 standard isoform (CD44s) in hypoxia-inducible $factor-1{\alpha}$ ($HIF-1{\alpha}$) regulation using MCF7 overexpressing CD44s (pCD44s-MCF7). When pCD44s-MCF7 was incubated under hypoxia, levels of $HIF-1{\alpha}$, vascular endothelial growth factor, and the $HIF-1{\alpha}$ response element-derived luciferase activity were significantly increased compared to those in the control MCF7. Incubation of pCD44s-MCF7 cells with HA further increased $HIF-1{\alpha}$ accumulation, and the silencing of CD44s attenuated $HIF-1{\alpha}$ elevation, which verifies the role of CD44s in $HIF-1{\alpha}$ regulation. In addition, the levels of phosphorylated extracellular signal-regulated kinase (ERK) was higher in hypoxic pCD44s-MCF7 cells, and $HIF-1{\alpha}$ accumulation was diminished by the pharmacological inhibitors of ERK. CD44s-mediated $HIF-1{\alpha}$ augmentation resulted in two functional outcomes. First, pCD44s-MCF7 cells showed facilitated cell motility under hypoxia via the upregulation of proteins associated with epithelial-mesenchymal transition, such as SNAIL1 and ZEB1. Second, pCD44s-MCF7 cells exhibited higher levels of glycolytic proteins, such as glucose transporter-1, and produced higher levels of lactate under hypoxa. As a consequence of the enhanced glycolytic adaptation to hypoxia, pCD44s-MCF7 cells exhibited a higher rate of cell survival under hypoxia than that of the control MCF7, and glucose deprivation abolished these differential responses of the two cell lines. Taken together, these results suggest that CD44s activates hypoxia-inducible $HIF-1{\alpha}$ signaling via ERK pathway, and the $CD44s-ERK-HIF-1{\alpha}$ pathway is involved in facilitated cancer cell viability and motility under hypoxic conditions.

Update on infantile hemangioma

  • Jung, Hye Lim
    • Clinical and Experimental Pediatrics
    • /
    • v.64 no.11
    • /
    • pp.559-572
    • /
    • 2021
  • The International Society for the Study of Vascular Anomalies classifies vascular anomalies into vascular tumors and vascular malformations. Vascular tumors are neoplasms of endothelial cells, among which infantile hemangiomas (IHs) are the most common, occurring in 5%-10% of infants. Glucose transporter-1 protein expression in IHs differs from that of other vascular tumors or vascular malformations. IHs are not present at birth but are usually diagnosed at 1 week to 1 month of age, rapidly proliferate between 1 and 3 months of age, mostly complete proliferation by 5 months of age, and then slowly involute to the adipose or fibrous tissue. Approximately 10% of IH cases require early treatment. The 2019 American Academy of Pediatrics clinical practice guideline for the management of IHs recommends that primary care clinicians frequently monitor infants with IHs, educate the parents about the clinical course, and refer infants with high-risk IH to IH specialists ideally at 1 month of age. High-risk IHs include those with life-threatening complications, functional impairment, ulceration, associated structural anomalies, or disfigurement. In Korea, IHs are usually treated by pediatric hematology-oncologists with the cooperation of pediatric cardiologists, radiologists, dermatologists, and plastic surgeons. Oral propranolol, a nonselective beta-adrenergic antagonist, is the first-line treatment for IHs at a dosage of 2-3 mg/kg/day divided into 2 daily doses maintained for at least 6 months and often continuing until 12 months of age. Topical timolol maleate solution, a topical nonselective beta-blocker, may be used for small superficial type IHs at a dosage of 1-2 drops of 0.5% gel-forming ophthalmic solution applied twice daily. Pulse-dye laser therapy or surgery is useful for the treatment of residual skin changes after IH involution.

The Relationship between F-18-FDG Uptake, Hexokinase Activity and Glut-1 Expression in Various Human Cancer Cell Lines (다양한 사람 종양세포주에서 F-18-FDG의 섭취와 Hexokinase 활성 및 Glut-1 발현과의 상관관계)

  • Kim, Bo-Kwang;Chung, June-Key;Lee, Yong-Jin;Choi, Yong-Woon;Jeong, Jae-Min;Lee, Dong-Soo;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.34 no.4
    • /
    • pp.294-302
    • /
    • 2000
  • Purpose: To investigate the mechanisms related to F-18-FDG uptake by tumors, F-18-FDG accumulation was compared with glucose transporter-1 (Glut-1) expression and hexokinase activity in various human cancer cell lines. Materials and Methods: Human colon cancer (SNU-C2A, SNU-C4, SNU-C5), hepatocellular carcinoma (SNU-387, SNU-423, SNU-449), lung cancer (NCI-H522, NCI-H358, NCI-H1299), uterine cervical cancer (HeLa, HeLa 229, HeLa S3) and brain tumor (A172, Hs 683) cell lines were used. After 24 hr incubation of $5{\times}10^5$ cells, 37 kBq F-18-FDG was added and the uptake by cells at 10 min was measured using a gamma counter. Hexokinase activity was measured by continuous spectrophotometric rate determination. To measure mitochondrial hexokinase activity, mitochondrial fraction was separated by a high speed centrifuge. Immunohistochemical staining of Glut-1 was performed, and graded as 0, 1, 2, or 3 according to expression. Results: There was difference among F-18-FDG uptake, total and mitochondrial hexokinase activity, and Glut-1 expression with different cancer cell lines. The correlations of F-18-FDG with total hexokinase and mitochondrial hexokinase activity were low (r=0.27 and 0.26, respectively). Glut-1 expression showed a good correlation with F-18-FDG uptake (p=0.81, p=0.0015). Previously, we reported no correlation of F-18-FDG uptake with hexokinase activity in colon cancer cell lines. Thus, when colon cancer cells were excluded, F-18-FDG uptake showed higher correlation with total hexokinase and mitochondrial hexokinase activity (r=0.81, p=0.0027 and r=0.81, p=0.0049, respectively). Conclusion: Both Glut-1 expression and hexokinase activity were contributing factors related to F-18-FDG accumulation in human cancer cell lines. The relative contribution of Glut-1 expression and hexokinase activity, however, was different among different cancer cell types.

  • PDF

Identification of Genetic Variations in CBL, SORBS1, CRK, and RHOQ, Key Modulators in the CAP/TC10 Pathway of Insulin Signal Transduction, and Their Association with Type 2 Diabetes Mellitus in the Korean Population

  • Hong, Kyung-Won;Jin, Hyun-Seok;Lim, Ji-Eun;Go, Min-Jin;Lee, Jong-Young;Hwang, Sue-Yun;Park, Hun-Kuk;Oh, Berm-Seok
    • Genomics & Informatics
    • /
    • v.7 no.2
    • /
    • pp.53-56
    • /
    • 2009
  • Recent evidence has strongly suggested that the CAP/TC10 pathway is involved in the trafficking, docking, and fusion of vesicles containing the insulin-responsive glucose transporter Glut4 to the plasma membrane. However, little is known about how the genes employed in the CAP/TC10 pathway are associated with the development of type 2 diabetes mellitus. In this study, we sequenced 4 genes of the CAP/TC10 pathway [SORBS1, CBL, CRK, and RHOQ] in 24 individuals to identify genetic variations in these loci. A total of 48 sequence variants were identified, including 23 novel variations. To investigate the possible association with type 2 diabetes mellitus, 3 single nucleotide polymorphisms from SORBS1, 3 from CBL, and 4 from RHOQ were genotyped in 1122 Korean type 2 diabetic patients and 1138 nondiabetic controls. Using logistic regression analysis, 1 significant association between SNP rs1376405 in RHOQ and type 2 diabetes mellitus [OR = 8.714 (C.I. 1.714-44.29), p = 0.009] was found in the recessive model. Our data demonstrate a positive association of the RHOQ gene in the CAP/TC10 pathway with T2DM in the Korean population.

ATAD2 expression increases [18F]Fluorodeoxyglucose uptake value in lung adenocarcinoma via AKT-GLUT1/HK2 pathway

  • Sun, Tong;Du, Bulin;Diao, Yao;Li, Xuena;Chen, Song;Li, Yaming
    • BMB Reports
    • /
    • v.52 no.7
    • /
    • pp.457-462
    • /
    • 2019
  • [18F]Fluorodeoxyglucose (FDG) PET/CT imaging has been widely used in the diagnosis of malignant tumors. ATPase family AAA domain-containing protein 2 (ATAD2) plays important roles in tumor growth, invasion and metastasis. However, the relationship between [18F]FDG accumulation and ATAD2 expression remains largely unknown. This study aimed to investigate the correlation between ATAD2 expression and [18F]FDG uptake in lung adenocarcinoma (LUAD), and elucidate its underlying molecular mechanisms. The results showed that ATAD2 expression was positively correlated with maximum standardized uptake value ($SUV_{max}$), total lesion glycolysis (TLG), glucose transporter type 1 (GLUT1) expression and hexokinase2 (HK2) expression in LUAD tissues. In addition, ATAD2 knockdown significantly inhibited the proliferation, tumorigenicity, migration, [18F]FDG uptake and lactate production of LUAD cells, while, ATAD2 overexpression exhibited the opposite effects. Furthermore, ATAD2 modulated the glycometabolism of LUAD via AKT-GLUT1/HK2 pathway, as assessed using LY294002 (an inhibitor of PI3K/AKT pathway). In summary, to explore the correlation between ATAD2 expression and glycometabolism is expected to bring good news for anti-energy metabolism therapy of cancers.

Zinc-chelated Vitamin C Stimulates Adipogenesis of 3T3-L1 Cells

  • Ghosh, Chiranjit;Yang, Seung Hak;Kim, Jong Geun;Jeon, Tae-Il;Yoon, Byung Hyun;Lee, Jai Young;Lee, Eun Young;Choi, Seok Geun;Hwang, Seong Gu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.8
    • /
    • pp.1189-1196
    • /
    • 2013
  • Adipose tissue development and function play a critical role in the regulation of energy balance, lipid metabolism, and the pathophysiology of metabolic syndromes. Although the effect of zinc ascorbate supplementation in diabetes or glycemic control is known in humans, the underlying mechanism is not well described. Here, we investigated the effect of a zinc-chelated vitamin C (ZnC) compound on the adipogenic differentiation of 3T3-L1 preadipocytes. Treatment with ZnC for 8 d significantly promoted adipogenesis, which was characterized by increased glycerol-3-phosphate dehydrogenase activity and intracellular lipid accumulation in 3T3-L1 cells. Meanwhile, ZnC induced a pronounced up-regulation of the expression of glucose transporter type 4 (GLUT4) and the adipocyte-specific gene adipocyte protein 2 (aP2). Analysis of mRNA and protein levels further showed that ZnC increased the sequential expression of peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) and CCAAT/enhancer-binding protein alpha (C/$EBP{\alpha}$), the key transcription factors of adipogenesis. These results indicate that ZnC could promote adipogenesis through $PPAR{\gamma}$ and C/$EBP{\alpha}$, which act synergistically for the expression of aP2 and GLUT4, leading to the generation of insulin-responsive adipocytes and can thereby be useful as a novel therapeutic agent for the management of diabetes and related metabolic disorders.