• Title/Summary/Keyword: Glucose Oxidase

Search Result 323, Processing Time 0.031 seconds

Determination of Glucose in Whole Blood by Chemiluminescence Method (화학발광법에 의한 전혈 중의 당 정량)

  • Lee, Sang Hak;Choi, Sang Seob
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.3
    • /
    • pp.223-229
    • /
    • 2001
  • A method for the determination of glucose in human whole blood by chemiluminescence method using a stopped flow injection system has been studied. The method is based on the differences in the chemiluminescence intensities of luminol due to the different amounts of hydrogen peroxide produced from the glucose oxidase catalyzed reaction. The enzyme reactor was prepared by immobilization of glucose oxidase on aminopropyl glass beads and the chemiluminescence from a flow cell was measured by means of an optical fiber bundle. In order to obtain the optimum experimental conditions, effects of pH for the chemiluminogenic solution and enzyme reactor, flow rate and temperature on the chemiluminescence intensity were investigated. The calibration curve obtained under optimum experimental conditions was linear over the range from $1.0{\times}10^{-1}$ mM to 7.0 mM and the detection limit was $6.0{\times}10^{-2}$ mM. The proposed method was applied to the determination of glucose in whole human blood sample and the results were compared with those obtained by an official method. The present method was also evaluated by the results of recovery experiments.

  • PDF

Fabrication and Improved Sensitivity with Surface Treatment of TiO2/GOD Mixture based Glucose Biosensor (TiO2/GOD 혼합물 기반의 글루코스 바이오 센서의 제작과 표면 처리를 통한 감도개선)

  • Lee, Junyeop;Jung, Dong Geon;Lee, Jae Yong;Kim, Jae Keon;Jung, Daewoong;Kong, Seong Ho
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.170-174
    • /
    • 2018
  • In this paper, the $TiO_2$/glucose oxidase (GOD) mixture has synthesized through simple and low-cost fabrication methods. The physical properties of the mixture were proved using an FT-IR/NIR spectrometer, an X-Ray diffractometer, and a Raman spectrometer. GOD maintained its bioactivity during all fabrication process. The current characteristics of the glucose biosensor were proportional to the glucose concentration and effective surface area of square pyramid on a silicon substrate. The maximum current change was measured in a pH 7.0 buffer solution. The simple and low-cost fabrication process and surface treatment can be used widely in previous research for improvements in effective surface area.

Controlled Release of Insulin through Glucose Oxidase Immobilized Composite Poly(vinyl Alcohol)/Chitosan Blend Membrane (글루코오즈가 고정화된 Poly(vinly Alcohol)/Chitosan 블렌드 복합막을 통한 인슐린의 방출조절)

  • Kim, Jin Hong;Shim, Jin Ki;Lee, Young Moo;Son, Tae Il
    • Membrane Journal
    • /
    • v.3 no.2
    • /
    • pp.70-78
    • /
    • 1993
  • The permeation of insulin was conducted through glucose oxidase(GOD) immobilized composite membrane composed of poly(vinyl akohol)/chitosan blend and porous polyamide membrane. The permeation coefficient of insulin through GOD-immobilized membrane was in the order of $10^{-6}{\sim}10^{-7}\textrm{cm}^3cm/\textrm{cm}^2sec$. The sensitivity of the composite membrane to the glucose concentration was high in a low glucose concentration resulting from the oxygen depletion from the membrane. The permeation of insulin through composite membrane made of PVA/chitosan and porous polyamide membrane was changed by pH and glucose concentration. The permeability was progressively increasing with the glucose concentration at least up to 500mg%.

  • PDF

Could Glucose Oxidase and Superoxide Dismutase Inhibit the Oxidation of Fats and Oils ? (글루코오스 산화효소와 수퍼옥사이드 디스뮤타제는 유지의 산화를 억제할 수 있는가?)

  • Han, Dae-Seok;Yi, Ock-Sook;Ahn, Byung-Hak;Shin, Hyun-Kyung
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.517-519
    • /
    • 1991
  • The effect of glucose oxidase (GO) and superoxide dismutase (SOD) on the oxidative stability of fish oil was investigated from oxygen content and peroxide value determinations of oil samples stored in vial. GO could inhibit the oxidation of the oil by removing headspace oxygen. When SOD was solubilized in the oil, peroxide value was slightly lower than that of a control, indicating that the enzyme also had an effect on retarding the oxidation.

  • PDF

Improvement in Enzyme Immobilization of Polypyrrole Enzyme Electrode using Radical Transfer (Radical Transfer 반응을 이용한 Polypyrrole 효소전극의 효소고정화 향상)

  • Kim, Hyun-Cheol;Cho, Young-Jai;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.100-103
    • /
    • 2000
  • In the case of immobilizing of glucose oxidase into polypyrrole (PPy) using electrosynthesis, the glucose oxidase (GOx) forms a coordinate bond with the polymers backbone. However, because of intrinsic insulation and net-chain of the enzyme, the charge transfer and mass transport are obstructed during the film growth. Therefore, the film growth is dull. We synthesized the enzyme electrode by electropolymerization added some organic solvent. A formative seeds of film growth is delayed by adding ethanol. The delay is induced by radical transfer between ethanol and pyrrole monomer. The radical transfer shares the contribution of dopant between electrolyte anion and GOx polyanion. This may lead to increase amount of immobilized the enzyme in PPy. For the UV absorption spectra of synthetic solution before synthesis and after, in the case of ethanol added, the optical density was slightly decreased for the GOx peaks. It suggests amount of GOx in the solution was decreased and amount of GOx in the film was increased. We established qualitatively that amount of immobilization can be improved by adding a little ethanol in the synthetic solution. It is due to radical transfer reaction. The radical transfer shares the contribution of dopant between small and fast electrolyte anion and big and slow GOx polyanion.

  • PDF

Hydrogen Peroxide Induces Apoptosis of BJAB Cells Due to Formation of Hydroxyl Radicals Via Intracellular Iron-mediated Fenton Chemistry in Glucose Oxidase-mediated Oxidative Stress

  • Lee, Jeong-Chae;Son, Young-Ok;Choi, Ki-Choon;Jang, Yong-Suk
    • Molecules and Cells
    • /
    • v.22 no.1
    • /
    • pp.21-29
    • /
    • 2006
  • The aim of this study was to determine if hydrogen peroxide ($H_2O_2$) generated by glucose oxidase (GO) induces apoptosis or necrosis of BJAB cells and which radical is the direct mediator of cell death. We found that GO produced $H_2O_2$ continuously in low concentrations, similar to in vivo conditions, and decreased proliferation and cell viability in a dose-dependent manner. The GO-mediated cytotoxicity resulted from apoptosis, and was confirmed by monitoring the cells after H33342/Annexin V/propidium iodide staining. Decreases of mitochondrial membrane potential and intracellular glutathione level were found to be critical events in the $H_2O_2$-mediated apoptosis. Additional experiments revealed that $H_2O_2$ exerted its apoptotic action through the formation of hydroxyl radicals via the Fenton rather than the Haber-Weiss reaction. Moreover, intracellular redox-active iron, but not copper, participated in the $H_2O_2$-mediated apoptosis.

Electrochemical Properties of Polypyrrole-Glucose Oxidase Enzyme Electrode with Different Dopants (Polypyrrole-Glucose Oxidase 효소전극의 배위자 크기에 따른 전기화학적 특성)

  • 김현철;구할본
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.2
    • /
    • pp.141-146
    • /
    • 2002
  • We synthesized polypyrrole (PPy) by electrolysis of the pyrrole monomer solution containing support electrolyte, KCl and/or p-toluene sulfonic acid sodium salt (p-TS). The electrochemical behavior, was investigated using cyclic voltammetry and AC impedance. In the case of using electrolyte p-TS, the oxidation potential of the PPy was about -02 V vs Ag/AgCl reference electrode, while the potential was about 0 V for using electrolyte KCl. The falloff of the oxidation potential gave a sign of an improvement in the electron hopoing mechanism on the backbone. The AC impedance plot gave a hint of betterment of mass transport. PPy doped with p-TS improved in mass transport or diffusion. That was because the PPy doped with p-TS was more porous than PPy with KCl. We attained an effect of good kinetic parameters, in the case of PP-GOx enzyme electrodes doped with p-TS, which were determined by 58 mmol dm$\^$-3/ for apparent Michaelis constant and by 581 ㎂ for maximum current respectively.

Electrochemical Properties of Polypyrrole/ Glucose Oxidase Enzyme Electrode (Polypyrrole/Glucose Oxidase 효소전극의 전기화학적 특성)

  • 김현철;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.357-361
    • /
    • 1999
  • GOD electrochemically immobilized in PPy/GOD complex have an effect on redox properties of the complex. In the cyclicvoltammetry, GOD shows the redox reaction at the potential below -0.6Y vs. Ag/AgCI. That leads to new peaks in the cyclicvoltammograms in additional to typical PPy peaks. The pH of electrolyte solution during potential swing decreased to 4.4, and then increased to 10. That suggests the redox of GOD for the cycling. As the concentration of GOD was increased, the anodic wave of the new peaks was strong as much as increased. GOD obstructs the diffusion of electrolyte anion because of its net chain. Insulating property of GOD is cause that it made the faradic impedance of complex large in charge transfer. It suggests that increase of the concentration of GOD be against electrochemical coupling. Therefore, the concentration of GOD and electrochemical coupling should be dealt with each other. The apparent Michaelis-lenten constant ( K\`$_{M}$ ) was determined by 30.7 mmol d $m^{-3}$ fur the PPy/GOD complex. The value is of the same order of magnitude as that for soluble glucose oxidase from Aspergillus Niger.r.

  • PDF

Characteristics of Bread-making and Quality of Rice Bread with Different Percentages of Dietary Fiber, Enzymes and Egg (식이섬유, 효소 및 달걀 첨가 수준에 따른 쌀빵의 제빵 적성 및 품질 특성)

  • Kim, Sang Sook;Chung, Hae Young
    • Journal of the Korean Society of Food Culture
    • /
    • v.33 no.6
    • /
    • pp.580-587
    • /
    • 2018
  • The baking properties of rice bread with polydextrose (3, 6, and 9%), enzymes (0.006, 0.009, and 0.018%) and egg (1.32 and 2.64%) were investigated. The specific gravity and color (L, a, b) of the dough, as well as the appearance, color (L, a, b) and texture of the rice bread were analyzed. The springiness, chewiness, gumminess (p<0.01) and hardness (p<0.001) of the rice bread tended to increase as the amount of added polydextrose increased. Replacement of rice flour with hemicellulase, glucose oxidase and fungal amylase are effective for producing rice bread. Replacement of rice flour with 0.009% glucose oxidase and 0.006% fungal amylase had a significant effect on increasing the volume and decreasing the hardness of the rice bread (p<0.001). Replacement of rice flour with 1.32% egg white also had a significant effect on increasing the volume and decreasing the hardness of the rice bread (p<0.001). These results suggest that replacement of rice flour with 0.009% glucose oxidase and 0.006% fungal amylase, and 1.32% egg white are effective for producing rice bread with good volume and hardness.

Use of Glucose Oxidase Immobilized on Magnetic Chitosan Nanoparticles in Probiotic Drinking Yogurt

  • Ali Afjeh, Maryam Ein;Pourahmad, Rezvan;Akbari-adergani, Behrouz;Azin, Mehrdad
    • Food Science of Animal Resources
    • /
    • v.39 no.1
    • /
    • pp.73-83
    • /
    • 2019
  • The aim of this study was to investigate the effect of glucose oxidase (GOX) immobilized on magnetic chitosan nanoparticles (MCNP) on the viability of probiotic bacteria and the physico-chemical properties of drinking yogurt. Different concentrations (0, 250, and 500 mg/kg) of free and immobilized GOX were used in probiotic drinking yogurt samples. The samples were stored at $4^{\circ}C$ for 21 d. During storage, reduction of the number of probiotic bacteria in the samples with enzyme was lower than the control sample (without enzyme). The sample containing 500 mg/kg immobilized enzyme had the highest number of Bifidobacterium lactis and Lactobacillus acidophilus. The samples containing immobilized enzyme had lower acidity than other samples. Moreover, moderate proteolytic activity and enough contents of flavor compounds were observed in these samples. It can be concluded that use of immobilized GOX is economically more feasible because of improving the viability of probiotic bacteria and the physico-chemical characteristics of drinking yogurt.