• Title/Summary/Keyword: Glucose Oxidase

Search Result 323, Processing Time 0.025 seconds

Effect of Gluconic Acid on the Production of Cellulose in Acetobacter xylinum BRC5

  • PARK, SANG TAE;TAEKSUN SONG;YOUNG MIN KIM
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.5
    • /
    • pp.683-686
    • /
    • 1999
  • Four mutants of Acetobacter xylinum BRC5 defective in gluconic acid production were isolated from UV-irradiated cells. The gluconic acid-negative mutants did not show glucose oxidase activity. The mutants were also defective in cellulose production. A randomly selected mutant grown in the Hestrin-Schramm medium (pH 6.0) supplemented with gluconic acid, however, was found to synthesize cellulose. The mutant grown in Hestrin-Schramm medium whose pH was adjusted to 5.0 with HC1 and contained no gluconic acid also produced cellulose. Wild-type cells grown under the same condition synthesized cellulose more rapidly than those grown in the pH 6.0 medium.

  • PDF

Electrochemical Properties of Polypyrrole Enzyme Electrode Immobilized Glucose Oxidase with Different Ligand (포도당 산화효소를 고정화한 Polypyrrole 효소전극의 배위자 변화에 따른 전기화학적 특성)

  • 김현철;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.529-532
    • /
    • 2001
  • We synthesized polypyrrole (PPy) by electrolysis of the pyrrole monomer solution containing support electrolyte KCl and/or p-toluene sulfonic acid sodium salt (p-TS). The electrochemical behavior was investigated using cyclic voltammetry and AC impedance. In the case of using electrolyte p-75, the redox potential was about -0.3 V vs. Ag/AgCl reference electrode, while the potential was about 0 V for using electrolyte KCl. It is considered as the backbone forms a queue effectively by doping p-TS Therefore, it is possible to be arranged regularly. That leads to improvement in the electron hopping. The AC impedance plot gave a tent of betterment of mass transport. PPy doped with p-TS has improved in mass transport, or diffusion. That is because the PPy doped with p-TS has a good orientation, and is more porous than PPy with KCl.

  • PDF

A Study on Performance Improvement of Glucose Sensor Adopting a Catalyst Using New Cross Liker (새로운 가교제를 적용한 촉매를 이용한 글루코스 센서의 성능향상 연구)

  • Chung, Yongjin;Kwon, Yongchai
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.802-807
    • /
    • 2015
  • In this study, we synthesized a new biocatalyst consisting of glucose oxidase (GOx), polyethyleneimine (PEI) and carbon nanotube (CNT) with addition of terephthalaldehyde (TPA) (TPA/GOx/PEI/CNT) for fabrication of glucose sensor that shows improved sensing ability and stability compared with that using other biocatalysts. Main bonding of the new TPA/GOx/PEI/CNT catalyst is formed by Aldol condensation reaction of functional end groups between GOx/PEI and TPA. Such formed bonding structure promotes oxidation reaction of glucose. Catalytic activity of TPA/GOx/PEI/CNT is evaluated quantitatively by electrochemical measurements. As a result of that, large sensitivity value of $41{\mu}Acm^{-2}mM^{-1}$ is gained. Regarding biosensor stability of TPA/GOx/PEI/CNT catalyst, covalent bonding formed between GOx/PEI and TPA prevents GOx molecules from becoming leaching-out and contributes improvement in biosensor stability. With estimation of the biosensor stability, it is found that the TPA/GOx/PEI/CNT catalyst keeps 94.6% of its initial activity even after three weeks.

Function of heat shock protein and Immune response (Heat shock protein의 기능과 면역 반응)

  • 김세진
    • The Microorganisms and Industry
    • /
    • v.25 no.1
    • /
    • pp.2-9
    • /
    • 1999
  • A study was made on enzymes of carbohydrate metabolism in T. concretivorus grown with and without glucose. The present results show that T. concretivorus possesses high activities of pentose shunt pathway and related enzymes, glucokinase, G-6-P dehydrogenase, 6-PG dehydrogenase, and phosphoglucoisomerase, but low activities of enzymes unique to EMP(fructose-1,6-diphosphate aldolase). Although the synthesis of the latter enzymes remains largely unaffected by the growth enviroment, that of the former is stimulated by glucose. And the failure to detect ED pathway enzymes in cells grown in thiosulate or thiosulfate-glucose medium eliminates the ED pathway as a significant route of glucose catabolism in T.concretivorus. These results suggest that pentose shunt pathway performs an energetic role in glucose metabolism by T.concretivorus with EMP as a subway. The absence of ED pathway and the presence of pentose shunt pathway which is the major route of catabolism in T.concretivorus are similar to those of other obligately chemolitho-trophic thiobacilli. The G-6-P and 6-PG dehydrogenase are both NAD and NADP specific, but MAD predominant. However, the 3-PGAL dehydrogenase is only NAD specific. Since the specific activity of 3-PGAL generated from glucose is converted mainly into pyruvate which is channeled into the TCA cycle. All enzymes of the TCA cycle tested and NADH oxidase are detected in the cells of T.concretivorus grown in thiosulfate. The specific activities of fumarase and isocitrate dehydrogenase are high and others are low. The presence of two isocitrate dehydrogenase (NAD-and NADP-linked) may have important regulatory function for this organism. The activity of NAD-oxidase, which is implicated in the energy generating metabolism, was very high in the crude cell-free extract of T.concretivorus, recording 55.11 m.mu. mole/min/mg protein. This well coincides with the fact that activities of NAD-linked G-6-P dehydrogenase, 6-PG dehydrogenase and 3-PGAL dehydrogenase were high.

  • PDF

The enzymatic Studies on Metabolic Pathways in Thiobacillus conctetivorus (Thiobacillus concretivorus의 대사경로에 관한 효소학적 연구)

  • 하영칠
    • Korean Journal of Microbiology
    • /
    • v.11 no.1
    • /
    • pp.1-18
    • /
    • 1973
  • A study was made on enzymes of carbohydrate metabolism in T. concretivorus grown with and without glucose. The present results show that T. concretivorus possesses high activities of pentose shunt pathway and related enzymes, glucokinase, G-6-P dehydrogenase, 6-PG dehydrogenase, and phosphoglucoisomerase, but low activities of enzymes unique to EMP(fructose-1, 6-diphosphate aldolase). Although the synthesis of the latter enzymes remains largely unaffected by the growth enviroment, that of the former is stimulated by glucose. And the failure to detect ED pathway enzymes in cells grown in thiosulate or thiosulfate-glucose medium eliminates the ED pathway as a significant route of glucose catabolism in T.concretivorus. These results suggest that pentose shunt pathway performs an energetic role in glucose metabolism by T.concretivorus with EMP as a subway. The absence of ED pathway and the presence of pentose shunt pathway which is the major route of catabolism in T.concretivorus are similar to those of other obligately chemolitho-trophic thiobacilli. The G-6-P and 6-PG dehydrogenase are both NAD and NADP specific, but MAD predominant. However, the 3-PGAL dehydrogenase is only NAD specific. Since the specific activity of 3-PGAL generated from glucose is converted mainly into pyruvate which is channeled into the TCA cycle. All enzymes of the TCA cycle tested and NADH oxidase are detected in the cells of T.concretivorus grown in thiosulfate. The specific activities of fumarase and isocitrate dehydrogenase are high and others are low. The presence of two isocitrate dehydrogenase (NAD-and NADP-linked) may have important regulatory function for this organism. The activity of NAD-oxidase, which is implicated in the energy generating metabolism, was very high in the crude cell-free extract of T.concretivorus, recording 55.11 m$\mu$ mole/min/mg protein. This well coincides with the fact that activities of NAD-linked G-6-P dehydrogenase, 6-PG dehydrogenase and 3-PGAL dehydrogenase were high.

  • PDF

Effects of Chungkookjang on Blood Glucose, Antioxidant Enzyme Activities and Histological Changes in Kidney of STZ-induced Diabetic Rats

  • Kim, Hye-Jeong;Kim, Young-Chul
    • Biomedical Science Letters
    • /
    • v.14 no.4
    • /
    • pp.211-218
    • /
    • 2008
  • The purpose of this study was to investigate the effects of dietary Chungkookjang (Korean fermented soybean) powder on blood glucose level, lipid profiles, antioxidant enzymes activities and histological changes in kidney of streptozotocin (STZ)-induced diabetic rats. Male Sprague-Dawley rats of three groups including nondiabetic group fed normal diet (NC), diabetic group fed normal diet (DC) and diabetic group fed Chungkookjang diet (DCH; 100 g/kg diet) were reared for 8 weeks. The serum glucose, triglycelide and total lipid levels in the DCH group were significantly lower (P<0.05) than the DC group. The renal xanthine oxidase, catalase and glutathione S-transferase activities in the DC group were significantly higher than the NC group. The xanthine oxidase, superoxide dismutase and glutathione S-transferase activities in the DCH group were significantly lower than the DC group (P<0.05). Tubular epithelial change, such as Armanni-Ebstein cells, was significantly reduced in the DCH group compared to the DC group. In conclusion, these results indicated that Chungkookjang supplement seems to be beneficial to correct the hyperglycemia and hyperlipidemia as well as to protect kidney against diabetic changes.

  • PDF

Effect of Fabrication Method of Anode on OCV in Enzyme Fuel Cells (효소연료전지의 Anode 제조조건이 OCV에 미치는 영향)

  • Kim, Young-Sook;Lee, Se-Hoon;Chu, Cheun-Ho;Na, Il-Chai;Lee, Ho;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.53 no.1
    • /
    • pp.6-10
    • /
    • 2015
  • Enzyme fuel cells were composed of enzyme anode and PEMFC cathode. Enzyme anodes was fabricated by compression of a mixture of graphite particle, glucose oxidase as a enzyme and ferrocene as a mediator, and then coated with Nafion ionomer. Open circuit voltage (OCV) were measured with variation of anode manufacture factors, to find optimum condition of enzyme anode. Optimum pressure was 9.0 MPar for enzyme anode pressing process. Highest OCV was obtained at 60% graphite composition in enzyme anode. Optimum glucose concentration was 1.7mol/l in anode substrate solution and enzyme activity of anode was stable for 7 days.

Isoeugenol prevents N-methyl-D-aspartate(NMDA)-induced neurotoxicity and convulsion

  • Wie, Myung-bok
    • Korean Journal of Veterinary Research
    • /
    • v.39 no.2
    • /
    • pp.287-293
    • /
    • 1999
  • Isoeugenol, one of the phenylpropanoid derivatives has been known to inhibit the lipid peroxidation via scavenging effect on hydroxyl or superoxide radical production. We examined whether isoeugenol has a inhibitory effect against N-methyl-D-aspartate(NMDA)-, oxygen/glucose deprivation- and xanthine/xanthine oxidase(X/XO)-induced neurotoxicity or NMDA-induced $^{45}Ca^{+2}$ uptake elevation in primary mouse vertical cultures. We also evaluated whether isoeugenol exhibits inhibitory action on NMDA-induced convulsion in mice. Isoeugenol ($30{\sim}300{\mu}M$) attenuated NMDA- and X/XO-induced neurotoxicity by 11~85% and 83~92%, respectively. In the oxyge/glucose deprivation(60 min)-induced neurotoxicity, isoeugenol significantly(p<0.05) reduced by 32% at the maximal concentration. However, it failed to ameliorate NMDA-induced $^{45}Ca^{+2}$ uptake elevation. Isoeugenol(0.5g/kg, i.p.) delayed 6.5 times on the onset time of convulsion evoked by NMDA($0.1{\mu}g$) compared to that of control. These results suggest that the neuroprotective action of isoeugenol may be ascribed to the modulation of massive generation of reactive oxygen species(ROS) occurred during the ischemic or excitotoxic damage, not by directly affecting the NMDA receptor.

  • PDF

Disposable Electrochemical Immunosensors for the Detection of Herbicide (제초제 검출을 위한 전기화학적 일회용 면역센서)

  • Chang, Seung-Cheol
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.35-39
    • /
    • 2011
  • A disposable electrochemical immunosensor system has been developed for the detection of herbicide in aqueous samples. Disposable screen printed carbon electrodes(SPCE) were used as basic electrodes and an enzyme, horseradish peroxidase (HRP), and anti-herbicide antibodies was immobilised on to the working electrode of SPCE by using avidin-biotin coupling reactions. An herbicide-glucose oxidase conjugates have been used for the competitive immunoreaction with sample herbicides. The enzymatic reaction between the conjugated glucose oxidase and glucose added generates hydrogen peroxide, which was reduced by the peroxidase immobilised. The latter process caused an electrical current change, due to direct re-reduction of peroxidase by a direct electron transfer mechanism, which was measured to determine the herbicides in the sample. The optimal operational condition was found to be: $20\;{\mu}gl-1$ deglycosylated avidin loading to the working electrode and working potential +50 mV vs. Ag/AgCl. The total assay time was 15 min after sample addition. The detection limits for herbicides, atrazine and simazine, were found to be 3 ppb and 10 ppb, respectively.

Permeation Properties of Insulin through Chitosan-g-Poly(4-vinyl pyridine ) Membrane (Chitosan-g-Poly(4-vinyl pyridine) 공중합체막을 통한 인슐린의 투과 특성)

  • Kim, Kong Soo;Kang, Seog Ho;Kim, Soo Jong;Lim, Jeong Kyu
    • Applied Chemistry for Engineering
    • /
    • v.5 no.4
    • /
    • pp.624-629
    • /
    • 1994
  • Chitosan-g-poly(4-vinyl pyridine)membranes were prepared by crosslinking reaction using glutaraldehyde and glucose oxidase immobilized chitosan/acrylamide composite membranes were fabricated by chitosan-g-poly(4-vinyl-pyridine) copolymer and acrylamine. Water content and permeability of insulin through chitosan-g-poly(4-vinyl pyridine )membranes increased with decreasing the pH of the medium. Permeability of insulin through chitosan/acrylamide composite membranes increased with increasing the concentration of glucose.

  • PDF