• 제목/요약/키워드: Glucose 6-phosphate dehydrogenase

검색결과 186건 처리시간 0.028초

Glucose dehydrogenase 유전자의 Aeromonas hydrophila DA33으로의 도입에 따른 인산가용화 균주의 개량 (Improvement of the Phosphate Solubilization Microorganism by the Introduction of Glucose Dehydrogenase Gene into Aeromonas hydrophila DA33.)

  • 박인혜;송옥렬;이용석;강위금;최시림;최용락
    • 생명과학회지
    • /
    • 제18권6호
    • /
    • pp.878-883
    • /
    • 2008
  • 생물비료의 개발을 위하여 분리된 난용성 인산염의 가용화능이 우수한 균주인 Aeromonas hydrophila DA33의 분자육종을 위해 인산가용화 관련 유전자를 도입하였다. E. coli의 gdh 유전자를 도입한 A. hydrophila DA33은 GDH 활성이 증가하여 유전자가 발현됨을 확인하였으며, wild type에 비해 GDH 활성이 약 40% 정도 높게 나타났으며, 이는 도입된 gdh 유전자의 발현에 의한 것으로 보여 진다. 이 균주는 인산가용화에 기여하는 유기산인 gluconate의 생성도 증가하였다. A. hydrophila DA33의 wild type과 gdh 유전자를 도입한 A. hydrophila pGHS/DA33의 난용성 인산염 가용화능을 실험한 결과, gdh 유전자를 도입한 균주의 인산 가용화능이 약 1.4배 정도의 효과를 보였다. 지금까지의 결과로 비춰볼때 앞으로 생물 비료로서의 A. hydrophila DA33 이용 가능성을 나타내며, 분자육종균 A. hydrophila pGHS/DA33은 생물비료로서의 효율성을 가질 것으로 기대된다.

Effects of Increased NADPH Concentration by Metabolic Engineering of the Pentose Phosphate Pathway on Antibiotic Production and Sporulation in Streptomyces lividans TK24

  • Jin, Xue-Mei;Chang, Yong-Keun;Lee, Jae Hag;Hong, Soon-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권10호
    • /
    • pp.1867-1876
    • /
    • 2017
  • Most of the biosynthetic pathways for secondary metabolites are influenced by carbon metabolism and supply of cytosolic NADPH. We engineered carbon distribution to the pentose phosphate pathway (PPP) and redesigned the host to produce high levels of NADPH and primary intermediates from the PPP. The main enzymes producing NADPH in the PPP, glucose 6-phosphate dehydrogenase (encoded by zwf1 and zwf2) and 6-phosphogluconate dehydrogenase (encoded by zwf3), were overexpressed with opc encoding a positive allosteric effector essential for Zwf activity in various combinations in Streptomyces lividans TK24. Most S. lividans transformants showed better cell growth and higher concentration of cytosolic NADPH than those of the control, and S. lividans TK24/pWHM3-Z23O2 containing zwf2+zwf3+opc2 showed the highest NADPH concentration but poor sporulation in R2YE medium. S. lividans TK24/pWHM3-Z23O2 in minimal medium showed the maximum growth (6.2 mg/ml) at day 4. Thereafter, a gradual decrease of biomass and a sharp increase of cytosolic NADPH and sedoheptulose 7-phosphate between days 2 and 4 and between days 1 and 3, respectively, were observed. Moreover, S. lividans TK24/pWHM3-Z23O2 produced 0.9 times less actinorhodin but 1.8 times more undecylprodigiosin than the control. These results suggested that the increased NADPH concentration and various intermediates from the PPP specifically triggered undecylprodigiosin biosynthesis that required many precursors and NADPH-dependent reduction reaction. This study is the first report on bespoke metabolic engineering of PPP routes especially suitable for producing secondary metabolites that need diverse primary precursors and NADPH, which is useful information for metabolic engineering in Streptomyces.

Antisteroidogenic activity of Raphanus sativus seed extract in female albino mice

  • Haldar, P.K.;Mazumder, U.K.;Bhattacharya, Sanjib;Manikandan, L.;Bhattacharya, Siladitya
    • Advances in Traditional Medicine
    • /
    • 제9권4호
    • /
    • pp.303-306
    • /
    • 2009
  • The defatted methanol extract of Raphanus sativus Linn. (Cruciferae) seed (MERS) was evaluated for its antisteroidogenic potential in mature female Swiss albino mice. The methanol extract at the doses of 100 and 200 mg/kg body weight significantly elevated the levels of cholesterol and ascorbic acid contents which serve as a precursor for the synthesis of steroid hormones in ovaries. The extract also significantly inhibited glucose-6-phosphate dehydrogenase and ${\Delta}^5-3{\beta}$-hydroxy steroid dehydrogenase, the two key enzymes involved in ovarian steroidogenesis. Hence the extract (MERS) exhibited significant antisteroidogenic activity.

당뇨유발쥐에서 닭의장풀의 혈당감소효과와 간조직내의 Glucose-6-Phosphate Dehydrogenase의 효소활성에 미치는 효과 (Effects of Commelina communis L. on the Blood Glucose Level in Alloxan Induced Diabetic Rat and the Biochemical Properties of Glucose-6-Phosphate Dehydrogenase from the Rat Livers)

  • 박수영;조경혜
    • 생약학회지
    • /
    • 제25권3호
    • /
    • pp.238-248
    • /
    • 1994
  • The hypoglycemic and metabolic effects of Commelina communis L. extract were investigated in alloxan induced diabetic rats. The increased blood glucose level in the diabetic rats was significantly reduced and the loss of body weight was recovered with the treatment of the plant protein fractions($30{\sim}70%$ ammonium sulfate precipitates). Administration of the plant protein fractions elicited the significant increase of glucose-6-phosphate dehydrogenase (G-6-P DH) activity and liver weight which were decreased in the diabetic rat liver. G-6-P DH was partially purified from extract- or insulin-treated diabetics, diabetic control, and normal rat liver and studied for the biochemical properties. The $K_m$ value(9.002 mM) of diabetic rat liver enzyme was greatly higher than that (0.033 mM) of normal enzyme indicating the affinity of enzyme for the substrate was significantly reduced in the diabetic rat liver. This reduced affinity of enzyme for the substrate in the diabetic rat was recovered in the extract- or insulin-treated rat liver enzyme having 0.164 or 0.208 mM of their $K_m$ values, respectively. Although there was no significant difference in the optimum pH(6.0) and optimum temperature($37^{\circ}C$) of enzyme among the experimental groups, the dependence of their activities on pH appeared to be slightly resistant in the extract- or insulin-treated group compared to the diabetic group. In order to investigate the antigenicity of rat liver enzyme among experimental groups, enzyme-linked immunosorbent assay was carried out by using anti-G-6-P DH anti-serum. Absorbance(0.102) shown in the normal rat liver was reduced even below zero in the alloxan-diabetic rat liver, but increased again in the extract- or insulin-treated rat liver(0.096 or 0.118, respectively). The result of this study suggested that G-6-P DH may be used as a marker enzyme to diagnose and to indicate the progress of the diabetics, and the hypoglycemic effect of the extracts of Commelina communis L. was certainly associated with action or mode of G-6-P DH on the rat liver.

  • PDF

Pseudomonas sp.의 탄소원에 따른 대사활성에 관한 연구 (Studies on the metabolic activities of Pseudomonas sp. in different carbon sources)

  • 배광성;이영녹
    • 미생물학회지
    • /
    • 제20권4호
    • /
    • pp.161-172
    • /
    • 1982
  • In order to compare the metabolic activities of methanol utilizing bacteria, Pseudomonas sp. grown in different carbon sources, changes in respiratory activities, prinicipal enzyme activities for the energy metabolism, and the macromolecular compositions of the cells grown on methanol or glucose were measured. 1. The respiratory activity of cells grown on methanol was higher than that of cells grown on glucose, while glucose exhibited the highest $O_2-consumption$ rate among the different respiratory substrates. 2. TRhe activity of hydroxy pyruvate reductase which participates in serine pathway was high in the cells grown on methanol. However, activities of NAD-linked alcohol dehydrogenase, formaldehyde dehydrogenase and formate dehydrogenase were slightly lower in the cells grown on glucose thant on methanol. 4. For succinic dehydrogenase and malic dehydrogenase which take part in TCA cycle, the specific activities were higher in the cells grown on methanol than in those grown on glucose. No activity of glucose-6-phosphate dehydrogenase, which participates in pentose monophosphate shunt, was detectable in the cells grown on either carbon sources. 5. Protein contents of the cells grown on methanol increased relatively compared with those of the cells grown on glucose. However, there are no changes in the contents of carbohydrate and nucleic acid.

  • PDF

The Reactivity of Antiserum Raised against Native Glucose-6-phosphate Dehydrogenase with Denatured Glucose-6-phosphate Dehydrogenase in Competitive ELISA

  • Kim, Moon-Hee
    • BMB Reports
    • /
    • 제31권5호
    • /
    • pp.519-523
    • /
    • 1998
  • We have previously reported that anti-glucose-6-phosphate dehydrogenase (G6PD) serum raised against native G6PD (nG6PD) enzyme recognized nG6PD antigen poorly in competitive enzyme-linked immunosorbent assay (ELISA) (Kim, 1997). In the present study, we investigated whether anti-G6PD serum raised against nG6PD can react with denatured G6PD effectively in competitive ELISA. We used partially active G6PD (paG6PD) by repeated freeze-thawing or SDS-denatured G6PD (SDS-G6PD) as both immobilized and soluble antigens, and anti-G6PD serum raised against nG6PD for competitive ELISA. The polystyrene cuvettes coated with either paG6PD or SDS-G6PD were challenged with a mixture of a limiting amount of anti-G6PD serum and various doses of paG6PD or SDS-G6PD as competitors, followed by incubation with alkaline phosphatase-anti-IgG conjugate. The competitive ELISA with paG6PD or SDS-G6PD antigen exhibited the sigmoidal dose-response curve characteristic of competition immunoassays. Furthermore, Triton-denatured G6PD (Triton-G6PD) was used in competitive ELISA. The paG6PD, SDS-G6PD, or Triton-G6PD used as competitors increased the inhibition of antibody binding to immobilized either of nG6PD or denatured G6PD compared with nG6PD competitor. The inhibition by denatured G6PD competitors was more pronounced at high competitor concentrations than at low counterparts. We conclude that anti-G6PD serum raised against nG6PD can effectively react with denatured G6PD in competitive ELISA and that our anti-G6PD serum recognizes denatured enzymes better than active enzymes.

  • PDF

Application of Solanum lycopersicum Glucose-6-phosphate Dehydrogenase to NADPH-generating System for Cytochrome P450 Reactions

  • Park, Chan Mi;Jeong, Heon;Ma, Sang Hoon;Kim, Hyun Min;Joung, Young Hee;Yun, Chul-Ho
    • 한국미생물·생명공학회지
    • /
    • 제47권4호
    • /
    • pp.536-545
    • /
    • 2019
  • Cytochrome P450 (P450 or CYP) is involved in the metabolism of endogenous and exogenous compounds in most organisms. P450s have great potential as biocatalysts in the pharmaceutical and fine chemical industries because they catalyze diverse oxidative reactions using a wide range of substrates. The high-cost nicotinamide cofactor, NADPH, is essential for P450 reactions. Glucose-6-phosphate dehydrogenase (G6PDH) has been commonly used in NADPH-generating systems (NGSs) to provide NADPH for P450 reactions. Currently, only two G6PDHs from Leuconostoc mesenteroides and Saccharomyces cerevisiae can be obtained commercially. To supply high-cost G6PDH cost-effectively, we cloned the cytosolic G6PDH gene of Solanum lycopersicum (tomato) with 6xHis tag, expressed it in Escherichia coli, and purified the recombinant G6PDH (His-G6PDH) using affinity chromatography. In addition, enzymatic properties of His-G6PDH were investigated, and the His-G6PDH-coupled NGS was optimized for P450 reactions. His-G6PDH supported CYP102A1-catalyzed hydroxylation of omeprazole and testosterone by NADPH generation. This result suggests that tomato His-G6PDH could be a cost-effective enzyme source for NGSs for P450-catalyzed reactions as well as other NADPH-requiring reactions.

Prevalence and molecular analysis of glucose-6-phosphate dehydrogenase deficiency in Chin State, Myanmar

  • Ja Moon Aung;Zin Moon;Dorene VanBik;Sylvatrie-Danne Dinzouna-Boutamba;Sanghyun Lee;Zau Ring;Dong-Il Chung;Yeonchul Hong;Youn-Kyoung Goo
    • Parasites, Hosts and Diseases
    • /
    • 제61권2호
    • /
    • pp.154-162
    • /
    • 2023
  • Glucose-6-phosphate dehydrogenase (G6PD) deficiency is caused by X-linked recessive disorderliness. It induces severe anemia when a patient with G6PD deficiency is exposed to oxidative stress that occurs with administration of an antimalarial drug, primaquine. The distribution of G6PD deficiency remains unknown while primaquine has been used for malaria treatment in Myanmar. This study aimed to investigate the prevalence of G6PD deficiency and its variants in Chin State, Myanmar. Among 322 participants, 18 (11 males and 7 females) demonstrated a G6PD deficiency. Orissa variant was dominant in the molecular analysis. This would be related to neighboring Indian and Bangladeshi population, in which Orissa variant was also reported as the main mutation type. The screening test for G6PD deficiency before primaquine treatment appears to be important in Myanmar.

에탄올 장기 투여에 의한 쥐 심근조직의 산화적 스트레스와 생체내 항산화 효소활성의 변화 (Effect of Chronic Ethanol Administration on Oxidative Stress and Cellular Defence System in Rat Myocardium)

  • 오세인
    • Journal of Nutrition and Health
    • /
    • 제29권7호
    • /
    • pp.721-728
    • /
    • 1996
  • The level of oxidative tissue damage caused by free radicals generated from ethanol oxidation was determined in the myocardium of chronic ethanol fed-rats and the protective action of various radical scavenging enzymes was monitored, also. Adult male Sprague-Dawley rats were given ethanol in an amount of 36% of total calories via Lieber-DeCarli liquid diet for 6 weeks. Control group was pair-fed with the diet containing isocaloric amount of dextrin-maltose instead of ethanol. Chronic ethanol administration resulted in the increased amount of myocardial thiobarbituric acid reactive substance(TBARS), th parameter of lipid peroxidation, under our experimental condition. Chronic ethanol ingestion did not cause any change in activities of either glutathione peroxidase or glutathione reductase and glucose-6-phosphate dehydrogenase were decreased after ethanol treatment. Therefore, chronic ethanol administration seemed to cause considerble changes in cellular defense function against oxidative tissue damage in rat myocardium through glutathione utilizing system and radical generation system. However the ultimate net result of chronic ethanol inestion on the myocardium of rat was the oxidative tissue damage revealed by increased TBARS content.

  • PDF