• Title/Summary/Keyword: Glove use

Search Result 44, Processing Time 0.03 seconds

Actual and Perceived Glove Uses Among Nurses in Intensive Care Unit (중환자실 간호사의 실제 장갑 사용과 인지하는 장갑 사용)

  • Ahn, Bo Ra;Kim, Eun Jung
    • Journal of East-West Nursing Research
    • /
    • v.28 no.2
    • /
    • pp.132-141
    • /
    • 2022
  • Purpose: This study aimed to investigate intensive care unit (ICU) nurses' actual and perceived glove uses for preventing healthcare associated infection. Methods: We observed nurses' donning glove by occasions and adherence to guideline for glove uses in four ICU in a single hospital. Total of 378 cases were observed from August 16 through October 6, 2020. Sixty one nurses of 66 nurses observed responded to a self-reported questionnaire about perceived glove use and knowledge of glove use. Data analysis was performed using descriptive statistics. Results: The number of observed episodes for glove use was 277. Although the highest numbers of occasions of wearing gloves was contact precaution, the compliance rate was 72.1%. The rates of donning gloves were low in the insertion and removal of peripheral venous catheters, blood glucose testing and blood sampling, which were at risk for exposure to blood. We observed misuse of wearing gloves even when they were not required. Results showed that the majority of non-compliance with glove use were a failure of performing hand hygiene before and after glove use and a failure of changing gloves between procedures on the same patient. The participant's knowledge of glove use was high. Conclusion: Based on the results, it is necessary to provide ICU nurses with education and reinforcement of proper glove uses for infection control.

Using Data Gloves for control of the 3-Dimensional postprocessing software (Data Glove를 이용한 3차원 데이터 후처리 소프트웨어의 제어)

  • Kim K. Y.;Kim B. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.56-61
    • /
    • 2004
  • As the size and dimension of target problems in the field of computational engineering including CFD gets bigger and higher, it is needed to have more efficient and flexible data visualization environment in terms of software and hardware. Even though it is still manageable to use a mouse in controlling 3-dimensional data visualization, it would be beneficial to use 3-D input device for 3-D visualization. 'Data Glove' is one of the best 3-D input devices, because human hands are best tools understanding 3-D space. Signals coming from 'Data Glove' are analog and very sensitive to finger motions, so we decided to use a digital filter. This paper describes our experience and benefits of using data glove in controlling 3-Dimensional Postprocess Software.

  • PDF

Evaluation of Glove Designs Applying Change in Hand Length Dimensions by Hand Motion (손동작에 따른 손체표 길이 변화를 적용한 장갑 설계 평가)

  • Kwon, O-Chae;Sun, Mee-Sun;Jung, Ki-Hyo;Lee, Min-Jeong;Yeon, Soo-Min;You, Hee-Cheon;Kim, Hee-Eun
    • Journal of the Ergonomics Society of Korea
    • /
    • v.24 no.4
    • /
    • pp.15-21
    • /
    • 2005
  • Use of a glove made of materials with a low elasticity decreases the performance of the hand such as agility, dexterity, range of motion, and grip strength. The present study examined if the adverse effects of a low-elastic glove can be reduced by a design which accommodates the changes of hand surface lengths by hand motion. Two glove designs which provide patches of elastic cloth and pleats at the finger joints and knuckle were developed by considering the hand surface length changes, and then compared with two conditions(bare hand and conventional glove design that does not consider the dynamic characteristics of the hand dimensions) in terms of completion time in peg board insertion task, maximum grip strength, discomfort in hand motion, discomfort in force exertion, and overall discomfort by 24 right-handed participants. The test results confirmed that wearing of a glove significantly reduced the agility and grip strength capability of the hand and indicated that the novel designs were effective to lessen the performance decreases compared to the conventional design. Also, of the glove designs, the pleat glove design was found most preferred for both better hand performance and less subjective discomfort.

Comparison of Hand Grip Strength, Dexterity, and Hand Function According to the Type of Glove

  • Ro, Hyo-Lyun
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.17 no.3
    • /
    • pp.11-21
    • /
    • 2022
  • PURPOSE: This study examined the changes in the handgrip strength, dexterity, and hand function according to the presence or absence of gloves and types of gloves. METHODS: Seventy-six adults in their twenties (male: 24, female: 52, mean age 21.04 years) were the subjects of this study. The handgrip strength, dexterity, and hand function were evaluated with bare hands without gloves, poly gloves, and latex gloves. The handgrip strength was measured using a dynamometer, and three pinch strength tests were performed: tip pinch, lateral pinch, and three-jaw pinch. The hand dexterity was evaluated using the Minnesota manual dexterity test, and the hand function was evaluated using the Jabson-Taylor hand function test. RESULTS: There was no difference in the grip strength depending on whether the gloves were worn. The hand grip, dexterity, and hand function showed significant differences according to the type of glove. Regarding the handgrip, dexterity, and hand function, the latex glove had the best function, and the poly glove had the lowest function. CONCLUSION: There was a difference in dexterity among the hand functions but no difference in grip strength according to the type of glove. The results suggest that the use of latex gloves in daily life be recommended.

Vibrotactile Glove Mouse (진동촉각 글러브 마우스)

  • Park, Jun-Hyung;Jeong, Ju-Seok;Jang, Tae-Jeong
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.741-744
    • /
    • 2009
  • In this paper, We introduce the glove mouse using a Gyroscope, acceleration sensor, Pin-type Viboratctile Display Device and USB HID. The device recognize a user's wrist by Gyroscope and acceleration sensor in the glove and transmit the data to USB dongle which is recognized the manufactured mouse by Blutooth. Also, using a special application, We transmit the tactile information to user through the Pin-type Vibrotactile Display. We implement wearable system in the glove except USB device. If user want to use general spatial mouse, we recognize mouse USB dongle only without another application. If user want to feel the tactile sensationn, we can use by connecting PC serial communication port to USB dongle.

  • PDF

Implementation of Wearable Sensor Glove using Pulse-wave Sensor, Conducting Fabric and Embedded System (맥파 측정 센서와 전도성 섬유, 임베디드 시스템 기반의 웨어러블 센서 글러브 구현)

  • Lee, Young-Bum;Lee, Byung-Woo;Lee, Myoung-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.3
    • /
    • pp.205-209
    • /
    • 2007
  • Today, there are research trends about the wearable sensor device that measures various bio-signals and provides healthcare services to user using e-Health technology. This study describes the wearable sensor glove using pulse-wave sensor, conducting fabric and embedded system. This wearable sensor glove is based on the pulse-wave measurement system which is able to measure the pulse wave signal in much use of oriental medicine on the basis of a research trend of e-Health system.

CONTROL OF A 3-DIMENSIONAL POSTPROCESSING SOFTWARE USING DATA GLOVES FOR IMMERSIVE ENVIRONMENT (몰입 환경을 위한 3차원 데이터 후처리 소프트웨어의 데이터 글로브에 의한 제어 구현)

  • Kim K.Y.;Kim B.S.
    • Journal of computational fluids engineering
    • /
    • v.11 no.2 s.33
    • /
    • pp.56-61
    • /
    • 2006
  • As the size and dimension of target problems in the field of computational engineering including CFD gets bigger and higher, it is needed to have more efficient and flexible data visualization environment in terms of software and hardware. Even though it is still manageable to use a mouse in controlling 3-dimensional data visualization, it would be beneficial to use 3-D input device for 3-D visualization. 'Data Glove' is one of the best 3-D input devices, because human hands are best tools for understanding 3-D space and manipulating 3-D objects. Signals coming from 'Data Glove' are analog and very sensitive to finger motions, therefore signal filtering using a digital filter is applied. This paper describes our experience and benefits of using data gloves in controlling 3-dimensional postprocessing softwares.

A Wireless Glove-Based Input Device for Wearable Computers

  • An, Sang-Sup;Park, Kwang-Hyun;Kim, Tae-Hee;Jeon, Jae-Wook;Lee, Sung-Il;Choi, Hyuck-Yeol;Choi, Hoo-Gon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1633-1637
    • /
    • 2003
  • Existing input devices for desktop computers are not suitable for wearable computers because they are neither easy to carry nor convenient to use in a mobile working environment. Different input devices for wearable computers must be developed. In this paper, a wireless glove-based input device for wearable computers is proposed. The proposed input device consists of a pair of chording gloves. Its keys are mounted on the fingers and their chording methods are similar to those of a Braille keyboard. RF (Radio Frequency) and IrDA (Infrared Data Association) modules are used to make the proposed input device wireless. Since the Braille representation for numbers and characters is efficient and has been well established for many languages in the world, the proposed input device may be one of good input devices to computers. Furthermore, since the Braille has been used for visually impaired people, the proposed one can be easily used as an input device to computers for them.

  • PDF

Electronic Music Glove using Sound Card

  • Lee, Changwon;Kim, Kyunyon;Uipil Chong
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.306-309
    • /
    • 2000
  • We developed an electronic music glove (EMG) system that could play musical scores in real time processing. The EMG system interfaces with the signal coming from the controller to the sound card in the computer. The computer, according to the status of the finger and foot switches, generates the signals to the speaker systems using the application C++ program by making use of MIDI message. The EMG systems can control up to several octave notes and duration of sound, and several musical performance expressions such as chorus, reverberation, rhythm, and volume. Finally, our EMG could play the performance of simple music depending on the choice of any kind of musical instruments in the sound card in computer systems.

  • PDF

Transfer rates of pathogenic bacteria during pork processing

  • Park, Jung min;Koh, Jong Ho;Cho, Min Joo;Kim, Jin Man
    • Journal of Animal Science and Technology
    • /
    • v.62 no.6
    • /
    • pp.912-921
    • /
    • 2020
  • We examined the rates of pathogenic bacterial cross-contamination from gloves to meat and from meat to gloves during pork processing under meat-handling scenarios in transfer rate experiments of inoculated pathogens. The inoculated pork contained ~5-6 Log10 CFU/g pathogenic bacteria like Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), Listeria monocytogenes (L. monocytogenes), and Salmonella enterica subsp. enterica (Sal. enteritidis). On cotton gloves, after cutting the pork, the cutting board, knife, and cotton gloves showed 3.07-3.50, 3.29-3.92 and 4.48-4.86 Log10 CFU/g bacteria. However, when using polyethylene gloves, fewer bacteria (3.12-3.75, 3.20-3.33, and 3.07-3.97 Log10 CFU/g, respectively) were transferred. When four pathogens (6 Log10 CFU/g) were inoculated onto the gloves, polyethylene gloves showed a lower transition rate (cutting board 2.47-3.40, knife 2.01-3.98, and polyethylene glove 2.40-2.98 Log10 CFU/g) than cotton gloves. For cotton gloves, these values were 3.46-3.96, 3.37-4.06, and 3.55-4.00 Log10 CFU/g, respectively. Use of cotton gloves, polyethylene gloves, knives and cutting boards for up to 10 hours in a meat butchering environment has not exceeded HACCP regulations. However, after 10 h of use, 3.09, 3.27, and 2.94 Log10 CFU/g of plate count bacteria were detected on the cotton gloves, cutting board, and knives but polyethylene gloves showed no bacterial count. Our results reveal the transfer efficiency of pathogenic bacteria and that gloved hands may act as a transfer route of pathogenic bacteria between meat and hands. The best hand hygiene was achieved when wearing polyethylene gloves. Thus, use of polyethylene rather than cotton gloves reduces cross-contamination during meat processing.