• Title/Summary/Keyword: Globular 이행

Search Result 16, Processing Time 0.028 seconds

Effect of Ti on Spatter Generation of $CO_2$Welding ($CO_2$용접시 Spatter발생에 미치는 Ti의 영향)

  • 안영호;이종봉;방국수;엄동석
    • Journal of Welding and Joining
    • /
    • v.14 no.5
    • /
    • pp.106-112
    • /
    • 1996
  • The effects of Ti addition in welding wire on the spatter generation and the droplet transfer phenomena were investigated. With increasing Ti content the spattering rate was decreased but the ratio of large size spatter (D $\geq$ 1. 0mm) was increased in both short circuit and globular transfer mode of $CO_2$welding. In short circuit transfer region, the arcing time was increased and the droplet transfer frequency was decreased with increasing Ti content In globular transfer region, the transition current and voltage to globular transfer was lowered and the welding condition region for stable globular transfer was widened with increasing Ti content.

  • PDF

Effect of Ca on Droplet Transfer Phenomena in GMA Welding (GMAW 용적이행 현상에 미치는 Ca의 영향)

  • 안영호;방국수;이종봉;장내웅
    • Journal of Welding and Joining
    • /
    • v.12 no.4
    • /
    • pp.76-84
    • /
    • 1994
  • Droplet transfer modes due to welding conditions and the effect of Ca in welding wire on droplet transfer were investigated. Droplet transfer mode in CO$_{2}$ welding was classified into 2 modes, that is, short circuit and globular transfer, with increasing welding current and voltage. With increasing Ca content in wire, repulsive pressure due to vaporization of Ca was considerably increased. In short circuit transfer region, arcing time was increased and droplet transfer cycle was decreased, with increasing Ca content. In globular transfer region, welding condition for globular transfer was lower current region, with increasing Ca content.

  • PDF

Dynamic Analysis of Metal Transfer using VOF Method in GMAW (I) - Globular and Spray Transfer Modes (VOF 방법을 이용한 GMA 용접의 금속 이행에 관한 동적 해석 (I) - 입상 용적과 스프레이 이행 모드의 해석 -)

  • 최상균;유중돈;김용석
    • Journal of Welding and Joining
    • /
    • v.15 no.3
    • /
    • pp.36-46
    • /
    • 1997
  • Dynamics of molten drop detachment in the Gas Metal Arc (GMA) welding is investigated using the Volume of Fluid(VOF) method. The electromagnetic effects are included in the formulation of the VOF method which has been widely used to analyze the dynamics of the fluid having a free surface. The molten drop geometry, pressure and velocity profiles within the drop are calculated numerically in the cases of globular and spray transfer modes. It appears that the velocity and current distribution affect metal detachment. It is found that the taper is formed and maintained during the spray transfer by the electromagnetic force. Predicted results show reasonably good agreement with the available experimental data which validates the application of the VOF method to metal transfer analysis.

  • PDF

Effect of Flux Type on Arc Characteristic of FCA Welding (FCA 용접의 아크현상에 미치는 Flux Type의 영향)

  • 강성원;오은식;유덕상;안영호
    • Journal of Welding and Joining
    • /
    • v.17 no.1
    • /
    • pp.116-123
    • /
    • 1999
  • The $CO_2$ welding with 100% $CO_2$ shielding gas is commonly used because of its cost and efficiency. Arc phenomena of the $CO_2$ welding is influenced by various factors such as chemical compositions of welding wire, shielding gas, welding condition and welding power source etc. In this study, arc phenomena is investigated by using two type of FCW(titania type, semi-metal type). Then, the welding quality and optimum welding condition can be selected. From this study, the following results were obtained; 1) In low current range(140A), FCW up to welding voltage(22V) resulted in a typical short circuit transfer. 2) In high current range(320A), the arc stability in titania FCW of a typical globular transfer is better than that of semi-metal FCW.

  • PDF

Modeling of Metal Transfer in GMA Welding Process (용융부의 형상을 고려한 GMA 용접 공정의 금속이행 모델링)

  • 이강희;최상균;유중돈
    • Journal of Welding and Joining
    • /
    • v.13 no.2
    • /
    • pp.115-121
    • /
    • 1995
  • As the metal transfer in the GMAW process affects the weld quality and productivity, the mechanism of molten formation and detachment has been investigated at various welding conditions. The force balance and pinch instability models have been widely used to analyze the metal transfer in the globular and spray modes, respectively A new approach is proposed in this work by minimizing the energy of molten drop system. Effects of the surface tension, gravity, electromagnetic and drag forces are considered with no presumed molten drop geometry. Effects of various welding conditions on the metal transfer are explained. The results show that the proposed mode can be applied to the globular and spray transfer modes. When compared with other models, results of the proposed model show better agreements with the available experimental data, which demonstrates the validity of the present model.

  • PDF

Analysis of Globular Transfer Considering Momentum Induced by Flow Within Molten Drop in GMAW (용적 내부의 유동에 의한 모멘텀을 고려한 GMA 용접의 입상용적 이행에 대한 해석)

  • Arif, Nabeel;Lee, Seung-H.;Kang, Moon-J.;Yoo, Choong-D.
    • Journal of Welding and Joining
    • /
    • v.26 no.4
    • /
    • pp.61-65
    • /
    • 2008
  • The static force balance model (SFBM) has been used to analyze drop transfer in gas metal arc welding. Although the SFBM is capable of predicting the detaching drop size in the globular mode with reasonable accuracy, discrepancy between the calculated and experimental results increases with current. In order to reduce discrepancy, the SFBM is modified by considering the momentum of the molten metal flow, which is generated by the pinch pressure. The momentum increases with smaller drop size and becomes compatible to the electromagnetic force. The modified force balance model (MFBM) predicts the experimental results more accurately, and extends its application to the projected mode.

Relation between Arc Phenomena and Spattering Ratio of Flux Cored Arc Welding with 100% $CO_2$ Shielding gas (플럭스 코어드 아크 용접의 아크현상과 스패터 발생량과의 관계)

  • S.W. Kang;D.S. Um;E.S. Oh;D.S. You
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.4
    • /
    • pp.65-75
    • /
    • 1998
  • The $CO_2$ welding with 100% $CO_2$ gas is commonly used because of its cost and efficiency. Arc phenomena and spattering ratio of the $CO_2$ welding are influenced by various factors such as chemical compositions of welding wire, shielding gas, welding condition and welding power source etc.. Spattering ratio is predominantly influenced by the welding condition which determines a droplet transfer rode. In this study, arc phenomena and spattering ratio are investigated by using two type of FCW(titania type, semi-metal type). Then, the welding quality and optimum welding condition can be selected. From this study, the following results ware obtained; 1) In low current range(140A), FCW up to welding voltage(22V) resulted in a typical short circuit transfer, increase of spattering ratio and growth of spatter diameter. 2) In high current range(320A), the arc stability in titania FCW of a typical globular transfer is better than that of semi-metal FCW.

  • PDF

Effect of Metal Transfer Mode on Spatter Generation of $CO_2$ Welding ($CO_2$ 용접의 스패터 발생에 미치는 용적이행 모드의 영향)

  • 강봉용;김희진
    • Journal of Welding and Joining
    • /
    • v.15 no.2
    • /
    • pp.72-80
    • /
    • 1997
  • The spatter generation rate of GMA welding with $CO_2$ gas shielding was measured with the change of welding conditions such as wire feeding rate and welding voltage and then the results were analized with the accompanying changes in metal transfer mode and in bead geometry. The spatter generation rate (SGR) was relatively low not only wit the short circuit transfer but with the truely globular transfer mode. However, the SGR resulted with the mixed mode were consistantly high. The resultant wave pattern of mixed mode was due to the coexistance of short-circuit and globular transfer and characterized by the frequent appearance of instantaneous short circuit. Considering the result of SGR and that of bead geometry, it could be concluded that when the wire feeding rate (or welding current) was either low or high, the optimum bead shape could be obtained along with the low spatter generation. However, in the middle range of wire feeding rate, the optimum bead shape was only obtained in the mixed mode condition resulting in the high spatter generation.

  • PDF