• Title/Summary/Keyword: Globally Harmonized System of Classification and Labeling of Chemicals

Search Result 13, Processing Time 0.023 seconds

Micronucleus Test for the Classification of Chemical Mutagenicity according to Globally Harmonized System

  • Rim, Kyung-Taek;Kim, Hyeon-Yeong;Chung, Yong-Hyun
    • Journal of Applied Biological Chemistry
    • /
    • v.56 no.4
    • /
    • pp.191-197
    • /
    • 2013
  • To classify the chemical hazard according to globally harmonized system of classification and labeling of chemicals (GHS), we investigated the genotoxicity of three chemicals, methyl myristate, 2-ethylhexanoic acid zinc salt, N,N,N',N'-tetrakis(2-hydroxyethyl) ethylenediamine, using male ICR mice bone marrow cells for the screening of micronucleus induction. Although these three chemicals have already been tested numerous times, a micronucleus test has not been conducted. The seven week-old male ICR mice were tested at three dosages for the three chemicals, respectively. After 24 h of oral administration with the three chemicals, the mice were sacrificed and their bone marrow cells were prepared for smearing slides. As a result of counting the micronucleated polychromatic erythrocyte (MNPCE) of 2,000 polychromatic erythrocytes, all treated groups expressed no statistically significant increase of MNPCE compared to the negative control group. There were no clinical signs related with the oral exposure of these three chemicals. It was concluded that these three chemicals did not induce micronucleus in the bone marrow cells of ICR mice, and there was no direct proportion with dosage. These results indicate that the three chemicals have no mutagenic potential under each test condition, and it is not classified these chemicals as mutagens by GHS.

In vivo Micronucleus Test of Cyclohexanone and Mutagenicity Classification According to a Globally Harmonized System (Cyclohexanone의 in vivo 소핵시험을 통한 GHS 변이원성 구분)

  • Kim, Soo-Jin;Rim, Kyung-Taek;Lim, Cheol-Hong
    • Journal of Life Science
    • /
    • v.24 no.7
    • /
    • pp.804-811
    • /
    • 2014
  • A micronucleus test of cyclohexanone has not yet been conducted. To classify the chemical hazard posed by cyclohexanone according to a globally harmonized system of classification and labeling of chemicals (GHS), we investigated its mutagenicity by micronucleus induction in ICR bone marrow cells of 7-weeek-old male mice. The mice were administered three dosages of the chemical for 24 hr via the oral route. After 24 hr, the mice were sacrificed, and their bone marrow cells were prepared for smearing slides. Based on counts of micronucleated polychromatic erythrocytes (MNPCEs) of 2,000 polychromatic erythrocytes, cyclohexanone did not inhibit bone marrow cell proliferation in any of the treated groups, but it resulted in micronucleus induction. According to the results of the mammalian bone marrow micronucleus test, this chemical is mutagenic and classified as category 2 in the GHS.

Classified Chemicals in Accordance with the Globally Harmonized System of Classification and Labeling of Chemicals: Comparison of Lists of the European Union, Japan, Malaysia and New Zealand

  • Yazid, Mohd Fadhil H.A.;Ta, Goh Choo;Mokhtar, Mazlin
    • Safety and Health at Work
    • /
    • v.11 no.2
    • /
    • pp.152-158
    • /
    • 2020
  • Background: The Globally Harmonized System of Classification and Labeling of Chemicals (GHS) was developed to enhance chemical classification and hazard communication systems worldwide. However, some of the elements such as building blocks and data sources have the potential to cause "disharmony" to the GHS, particularly in its classification results. It is known that some countries have developed their own lists of classified chemicals in accordance with the GHS to "standardize" the classification results within their respective countries. However, the lists of classified chemicals may not be consistent among these countries. Method: In this study, the lists of classified chemicals developed by the European Union, Japan, Malaysia, and New Zealand were selected for comparison of classification results for carcinogenicity, germ cell mutagenicity, and reproductive toxicity. Results: The findings show that only 54%, 66%, and 37% of the classification results for each Carcinogen, Mutagen and Reproductive toxicants hazard classes, respectively are the same among the selected countries. This indicates a "moderate" level of consistency among the classified chemicals lists. Conclusion: By using classification results for the carcinogenicity, germ cell mutagenicity, and reproductive toxicity hazard classes, this study demonstrates the "disharmony" in the classification results among the selected countries. We believe that the findings of this study deserve the attention of the relevant international bodies.

Introduction of Globally Harmonized System for Agrochemical Products (농약제품을 위한 GHS 제도 도입)

  • Jeong, Sang-Hee;Park, Cheol-Beom;Han, Bum-Seok;Kang, Chang-Soo;Jeong, Mi-Hye;Sung, Ha-Jung
    • The Korean Journal of Pesticide Science
    • /
    • v.15 no.2
    • /
    • pp.201-207
    • /
    • 2011
  • The use of chemical products to enhance and improve life is a widespread worldwide practice. In spite of the benefits of these products, there is the potential of chemicals for adverse effects to people or the environment. The globally harmonized system (GHS) of classifying and labeling chemicals that was recommended by the United Nations in 2003, has been introduced globally since 2008. Compare to the classification criteria of agricultural formulations today, classification criteria of GHS is different partly. One pictogram is removed and 3 pictograms are introduced newly. The classification criteria of GHS will be changed preferentially and implemented gradationally to hazard products.

A study on the provide of CMR substances information for Threshold Limit Values (TLVs) chemicals in KMoEL (노출기준 설정 화학물질의 CMR물질 정보 제공에 관한 연구)

  • Lee, Kwon Seob;Lee, Hye Jin;Lee, Jong Han
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.22 no.1
    • /
    • pp.82-90
    • /
    • 2012
  • Objectives: This study was performed to provide workplaces with political guidelines that apply international CMRs (Carcinogens, Mutagens, Reproductive toxins) information to Public Notice of TLVs (Threshold Limit Values). We analyzed information supply status about CMRs of international agencies and compared substances for which TLVs are set in KMoEL (Ministry of Employment and Labor in Korea). Methods: We referred to the reliable literature about classification criteria of CMRs corresponding to UN GHS (Globally Harmonized System of classification and Labeling of chemicals) and Public Notice No. 2009-68 'Standard for Classification, Labeling of Chemical Substance and Material Safety Data Sheet' in KMoEL. The classification system of CMRs in professional organizations (IARC, NTP, ACGIH, EU ECHA, KMoEL, etc.) was investigated through the internet and literature. Conclusions: 191 chemical substances among total 650 substances with TLVs are classified as carcinogens. Also, 43 substances classified as mutagens, and 44 as reproductive toxicants. These results suggest that the information of CMRs in Public Notice of TLV will be reorganized to 191 carcinogens, 43 mutagens, and 44 reproductive toxicants.

Analysis on the Legal Control Levels and GHS Classification Information Status for Strongly Acidic Hazardous Materials (강산성 유해화학물질의 법적관리 수준 및 GHS 분류정보 제공 실태분석 연구)

  • Lee, Kwon Seob;Jo, Ji Hoon;Park, Jin Woo;Song, Se Wook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.23 no.4
    • /
    • pp.384-392
    • /
    • 2013
  • Objective: This study inspected incident cases, legal control levels, and GHS(Globally Harmonized System of Classification and Labeling of Chemicals) classification results of strong acids such as hydrogen fluoride, hydrogen chloride, nitric acid, and sulfuric acid, which have been responsible for many recent chemical accidents. As a result, it is deemed necessary for legal control levels of these strong acids to be revised and GHS classification be managed nation-wide. Methods: This study inspected incident cases and legal control levels for strong acids such as hydrogen fluoride, hydrogen chloride, nitric acid, and sulfuric acid. The study analyzed and compared chemical information status and GHS classification results. Results: There were 76 domestic incidents involving strongly acidic hazardous materials over the five years between 2007 and 2011. They include 37 leakage incidents(46.7%) within a workplace, 30 leakage incidents(39.5%) during transportation, and nine leakage incidents(13.8%) following an explosion. The strongly acidic materials in question are defined and controlled as toxic chemicals according to the classes of Substances Requiring Preparation for Accidents, Managed Hazardous Substance, Hazardous Chemical(corrosive) as set forth under the Enforcement Decree of the Toxic Chemicals Control Act and Rules on Occupational Safety and Health Standards of Occupational Safety and Health Act. Among them, nitric acid is solely controlled as a class 6 hazardous material, oxidizing liquid, under the Hazardous Chemicals Control Act. The classification results of the EU ECHA(European Chemicals Agency) CLP(Commission Regulation(EC) No. 790/2009 of 10 August 2009, for the purposes of its adaptation to technical and scientific progress, Regulation(EC) No 1272/2008 of the European Parliament and of the Council on classification, labeling and packaging of substances and mixtures) and NIER (National Institute of Environmental Research) are almost identical for the three chemicals, with the exception of sulfuric acid. Much of the classification information of NITE (National Institute of Technology and Evaluation) and KOSHA(Korea Occupational Safety and Health Agency, KOSHA) is the same. NIER provides 12(41.4%) out of 29 classifications, as does KOSHA.

A Study on the Recommendation of the Candidate Substances and Methods for an Additional Designation of Special Management Materials in Occupational Safety and Health Act(OSHA) (산업안전보건법 특별관리물질의 추가 지정방법 및 후보물질 권고에 관한 연구)

  • Lee, Kwon Seob;Hong, Mun Ki;Lee, Hye Jin;Byeon, Sang-Hoon;Park, Jung Sun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.1
    • /
    • pp.91-102
    • /
    • 2014
  • Objectives: This study was performed in order to devise a procedure for supplementing the Special Management Materials in the Occupational Safety and Health Act and recommend candidate materials. The results are expected to be used as fundamental data for classification and criteria necessary to manage Special Management Materials in workplaces. Also, they are expected to be used as a basis for selecting target materials to nominate as additional Special Management Material. Methods: We investigated the selection standards for candidates and review ranges of data sources to nominate Special Management Materials. The substances classified as GHS(Globally Harmonized System of classification and labeling of chemicals) category 1A(known to have carcinogenic potential and reproductive toxicity for humans) or 1B(presumed to have carcinogenic potential and reproductive toxicity for humans) carcinogens and reproductive toxicants among the Controlled Hazardous Substances of the Regulation on Occupational Safety and Health Standards and substances with OELs(Occupational Exposure Limits) were inspected as the candidates for Special Management Materials. Conclusions: A seven-step procedure for selecting candidates to designate as Special Management Materials was suggested, including the setting of target chemicals for evaluation, classification of CMR(Carcinogens, Mutagens or Reproductive toxicants) by GHS classification and criteria, suggestion and selection of the candidates, and more. This study recommends 58 chemicals as qualified candidates to supplement the Special Management Materials.

A Review on Mutagenicity Testing for Hazard Classification of Chemicals at Work: Focusing on in vivo Micronucleus Test for Allyl Chloride

  • Rim, Kyung-Taek;Kim, Soo-Jin
    • Safety and Health at Work
    • /
    • v.6 no.3
    • /
    • pp.184-191
    • /
    • 2015
  • Chemical mutagenicity is a major hazard that is important to workers' health. Despite the use of large amounts of allyl chloride, the available mutagenicity data for this chemical remains controversial. To clarify the mutagenicity of allyl chloride and because a micronucleus (MN) test had not yet been conducted, we screened for MN induction by using male ICR mice bone marrow cells. The test results indicated that this chemical is not mutagenic under the test conditions. In this paper, the regulatory test battery and several assay combinations used to determine the genotoxic potential of chemicals in the workplace have been described. Further application of these assays may prove useful in future development strategies of hazard evaluations of industrial chemicals. This study also should help to improve the testing of this chemical by commonly used mutagenicity testing methods and investigations on the underlying mechanisms and could be applicable for workers' health.

Interministerial GHS Activities and Implementation in Korea

  • Yu, Il-Je
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2005.06a
    • /
    • pp.240-248
    • /
    • 2005
  • To implement a globally harmonized system of classification and labeling of chemicals (GHS) in Korea, an interminsterial GHS working group involving 6 ministries established an expert working group composed of 7 experts from relevant organizations and one private consultant to prepare an officialKorean GHS version by March, 2005. As such, the translation and review of the official Korean GHS version, including annexes, started in October, 2004 and was completed on March 15, 2005. The official Korean GHS version has now been posted on the websites of the relevant ministries and organizations to solicit public opinions. The official Korean GHS version will be finalized after a public hearing scheduled forMay, 2005. Collaborative efforts as regards implementing and disseminating the GHS in Korea will be continued to avoid any confusion or duplication and for effective use of resources. The globally harmonized system of classifying and labeling chemicals (GHS) was originally adopted in 1992 at the United Nations Conference on Environment and Development (UNCED), as subsequently reflected in Agenda 21 chapter 19. The work was coordinated and managed under the auspices of the Interorganization Programme for the Sound Management of Chemicals(IOMC) Coordinating Group for the Harmonization of Chemical Classification Systems (UNCEGHS). The technical focal points for completing the work were the International Labour Organization (ILO); Organization for Economic Cooperation and Development (OECD); and United Nations Economic and Social Council's Subcommittee of Experts on the Transport of Dangerous Goods (UNSCETDG). The work was finalized in October 2002, and the World Summit on Sustainable Development in Johannesburg on 4 September 2002 encouraged countries to implement the new GHS as soon as possible with a view to having the system fully operational by 2008 (UN, 2003). Implementation has already started with pilot countries introducing the system to their national practices in different regions of the world. The GHS text, called the purple book, becameavailable as a W publication in early 2003. The GHS text, called the purple book, becameavailable as a UN publication in early 2003. The GHS system will be kept dynamic, and regularly revised and made more efficient as experience is gained in its implementation. While national or regional governments are the primary audiences for this document, it also contains sufficient context and guidance for those in industry who will ultimately be implementing the national requirements that will be introduced (UN, 2003). The Japanese government published their official Japanese GHS version, the first in Asia, in April 2004 after starting work in January 2003 based on an interministerial chemical coordination committee involving 7 ministries, including the Ministry of Foreign Affairs, Ministry of Internal Affairs and Communications, Ministry of Health, Labour, and Welfare, Ministry of Agriculture, Forestry and Fisheries, Ministry of Economy, Trade and Industry, Ministry of Land, Infrastructure, and Transport, and Ministry of Environment (MOE, 2004). Accordingly, similar to the Japanese GHS efforts, this paper presents the interministerial efforts involved in publishing the official Korean GHS version.

  • PDF

A study on importance of MSDS education (MSDS 교육의 중요성에 관한 연구)

  • Choi, Sung-Jai
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.6
    • /
    • pp.209-215
    • /
    • 2015
  • Following the semiconductor industry's growing, various types of toxic gases and caustic chemicals, HF(Hydrofluoric acid), HCI (Hydochloric acid), $H_2O_2$ (Hydrogen peroxide), $H_2SO_4$ (Sulfuric acid), and Piranha, were using on the semiconductor manufacturing process. Therefore many gas leakage accidents that produce huge losses of lives were caused by the processes. This research deeply considers two basic solutions that the necessity of MSDS education on university for reducing damage of lives and protecting life from chemical leak accidents such as a HF accident in Gumi, Korea and the use of GHS, REACH and the comprehension of propriety about using MSDS for keeping safety from conflagrations by released poison chemical materials.