• Title/Summary/Keyword: Global warming gas

Search Result 488, Processing Time 0.024 seconds

Review of Long-term Climate Change Research Facilities for Forests (기후변화 대응 산림의 장기 기후변화 연구시설)

  • Seo, Dong-Jin;Kim, Hyun-chul;Lee, Hyun Seok;Lee, Solji;Lee, Wi-Yeong;Han, Sim-Hee;Kang, Jun Won
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.274-286
    • /
    • 2016
  • Carbon dioxide ($CO_2$) accounts for about 72% of the total greenhouse gas emissions. It is also widely known as a major cause of global warming. According to the IPCC's fifth evaluation report, the growth rate of atmospheric $CO_2$ has increased by 35% for the last 100 years and global warming is occurring much more rapidly than expected since 1990s. As a result of climate change, global warming is increasing the frequency and severity of extreme weather events around the world, which has changed forest vegetation zone and vegetation phenology. The Kyoto Protocol recognizes the importance of forests and refers to the conservation and enhancement of forests as sinks and reservoirs of greenhouse gases. In this regard, studies of tree responses to climate change are indispensable for predicting changes in the forest ecosystems in the future. Therefore, studies using long-term climate change research facilities, associated with long-term ecological research (LTER) in the fields, will make a considerable contribution to predict and approach the changes in the future.

The Study on the Global Emission Reduction Commitments and Environment Change After Climate Agreement (기후협정후의 배출감소와 환경변화이행에 관한 연구)

  • Kim, Kyung-Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.12
    • /
    • pp.319-328
    • /
    • 2014
  • Although most of the debate on global climate change policy has focused on quantity controls due to their political appeal, this paper argues that agreement commitment are more efficient. Scenarios show that to have a likely chance of limiting the increase in global mean temperature to two degrees Celsius, means lowering global greenhouse gas emissions by 40 to 70 percent compared with 2010 by mid-century, and to near-zero by the end of this century. Ambitious mitigation may even require removing carbon dioxide from the atmosphere. This paper emphasizes on global cooperation which is a key for preventing global warming and toward sustainable development, and fair emission reduction targets among countries are significant for achieving emission reductions.

Evaluation of the environmental load and the amount of $CO_2$ emissions on Design for railway Alignment (철도선형설계의 환경부하량 및 이산화탄소 발생량 평가)

  • Kwon, Suk-Hyun;Lim, Kwang-Soo;Kim, Min-Ji
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.476-482
    • /
    • 2011
  • Following public expectations from the emergence of an international agreement with greater legal force after the expiration of the 2012 Kyoto Protocol, Korea is also making efforts to effectively and systematically initiate the mitigation policy and enforce the terms of the international climate change agreement. The majority of domestic industries are candidates for greenhouse gas emission regulation, thereby requiring the proposal of a method that effectively reduces environmental contaminate substances released from railway facilities, following the prediction of an increase in railway usage as an environment-friendly transportation method in the future. Accordingly, this study has quantitatively calculated the amount of released environmental contaminates through the life cycle assessment (LCA) on railway facility constructions, and has evaluated the environmental load and the amount of greenhouse gas emissions through the resulting values. The results of the LCA analysis showed that the amount of environmental load was the highest at the early stages of material implementation and construction, and that the value of global warming was viewed as the highest among the effects. As officially announced by the World Meteorological Organization and the United Nations Environment Program that $CO_2$ is the main culprit of global warming, the analytical values confirmed that the amount of $CO_2$ emissions accounted for more than half of the released greenhouse gases at 2.90E+04tons. The environmental load and $CO_2$ emission rates analyzed in this study are judged to be used in the deduction of the optimum environment-friendly method and quantitative environmental effect of railway facility constructions in the future, as the values can be evaluated based on their degree of environment friendliness.

  • PDF

Techno-Economic Analysis of Green Hydrogen Production System Based on Renewable Energy Sources (재생에너지 기반 그린 수소 생산 시스템의 기술 경제성 분석)

  • PARK, JOUNGHO;KIM, CHANG-HEE;CHO, HYUN-SEOK;KIM, SANG-KYUNG;CHO, WON-CHUL
    • Journal of Hydrogen and New Energy
    • /
    • v.31 no.4
    • /
    • pp.337-344
    • /
    • 2020
  • Worldwide, there is a significant surge in the efforts for addressing the issue of global warming; the use of renewable energy is one of the solutions proposed to mitigate global warming. However, severe volatility is a critical disadvantage, and thus, power-to-gas technology is considered one of best solutions for energy storage. Hydrogen is a popular candidate from the perspective of both environment and economics. Accordingly, a hydrogen production system based on renewable energy sources is developed, and the economics of the system are assessed. The result of the base case shows that the unit cost of hydrogen production would be 6,415 won/kg H2, with a hydrogen production plant based on a 100 MW akaline electrolyzer and 25% operation rate, considering renewable energy sources with no electricity cost payment. Sensitivity study results show that the range of hydrogen unit cost efficiency can be 2,293 to 6,984 Won/kg H2, depending on the efficiency and unit cost of the electrolyzer. In case of electrolyzer operation rate and electricity unit cost, sensitivity study results show that hydrogen unit cost is in the range 934-26,180 won/kg H2.

Separation and Recovery of F-gases (불화 온실 가스 저감 및 분리회수 기술의 연구개발 동향)

  • Nam, Seung-Eun;Park, Ahrumi;Park, You-In
    • Membrane Journal
    • /
    • v.23 no.3
    • /
    • pp.189-203
    • /
    • 2013
  • F-gases, gases containing fluorine such as perfluorocarbons (PFCs), sulfurhexafluoride ($SF_6$), nitrogen trifluoride ($NF_3$) are known to have green house effects. Although the net emission rates of gases containing fluorine are much lower than those of $CO_2$, their contribution to global warming cannot be ignored because of their extremely high global warming potential (GWP). F-gases mainly have been used for a variaty of applications in the semiconductor/LCD processes and in the electric power distribution industry of the national key industry. One of practical solutions of controlling the emission rates of F-gases is to reuse by separation and recovery of F-gases of low concentration from the gases mixtures with nitrogen or air. This work investigates some methods for F-gases recovery and separation around the membrane-based process.

Environmental Life Cycle Assessment (LCA) of Polymer Electrolyte Membrane Fuel Cell (PEMFC) System (Polymer Electrolyte Membrane Fuel Cell 시스템의 환경 전과정평가)

  • KIM, HYOUNGSEOK;HONG, SEOKJIN;HUR, TAK
    • Journal of Hydrogen and New Energy
    • /
    • v.29 no.1
    • /
    • pp.111-116
    • /
    • 2018
  • The environmental impacts of a 1 kW polymer electrolyte membrane fuel cell (PEMFC) system are quantitatively assessed by performing a Life Cycle Assessment (LCA) study. A PEMFC system produces electricity and heat simultaneously, so an appropriate allocation of associated inputs and outputs is performed between the electricity and heat produced. The environmental impacts of the PEMFC system on the impact categories such as global warming (GW), abiotic depletion (AD), acidification (AC), and eutrophication (EU) are assessed from the life cycle impact assessment. The impact indicator results of the impact assessment on these impact categories are obtained as $3.70E-01kg\;CO_2\;eq./kWh$, 1.86E-03 kg Sb eq./kWh, $4.09E-04kg\;SO_2\;eq./kWh$, and $1.88E-05kg\;PO_4{^{3-}}/kWh$, respectively. For all impact categories studied the most influential stage is the operation stage, which accounts for 98.8%, 98.7%, 70.3%, and 62.3% of the total impact on GW, AD, AC, and EU, respectively. For the impact categories of AD, AC, and EU, most of the environmental impacts during the operation stage is attributed to the production of city gas. However, for the impact category of GW, $CO_2$ emission from the reforming process of city gas is the main reason for the largest contribution of the operation stage to the total impact results.

A Study on the Amount of Carbon Emission of Organic Materials through Life-Cycle Assessment (LCA) (전과정평과를 통한 유기농자재의 탄소배출량 산정연구 -유기질비료를 중심으로-)

  • Yoon, Sung-Yee;Kwon, Hyuk-Jun
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.1
    • /
    • pp.23-38
    • /
    • 2011
  • ● The current world is suffering abnormal climate caused by global warming. The main cause of global warming is greenhouse gas such as carbon dioxide. The carbon labeling system and carbon traceability system being pushed ahead in the agricultural sector is the policy for responding to climate change to reduce greenhouse gas emissions. To make this policy more effective and enhanced, the amount of carbon emissions should be calculated based on the kind of crops or the various businesses in the agricultural sector. Therefore, in order to estimate the accurate amount of carbon emissions, it is necessary to establish carbon dioxide emission intensity of various agricultural materials added onto the agriculture, and to calculate the amount of carbon dioxide emission for each crop according to agricultural production. The purpose of this study is to establish the amount of emission, emission per agricultural materials, of agricultural materials being added for crop production as a basic step, and emission intensity which can be used in the future market in order to estimate accurate amount of carbon emission in all the policies being promoted in the agricultural sector. Therefore, in this study, in order to build LCI D/B about organic fertilizers among many organic materials added onto the organic agriculture sector, one leading company in organic fertilizer production was selected and LCA was conducted for this leading company. We had to build the intensity and integrated average concept of intensity upon the two cases once production farmers for their own consumption and farms besides organic fertilizer company were categorized even if it's little amount. But in this study, individually produced organic fertilizers were excluded. Calculated results are following. Carbon emission of mixed expeller cake fertilizer in organic fertilizer was 1,106,966.89kg-$CO^2$ and emission intensity was 0.01606kg-$CO^2$, respectively. Total emission of mixed organic fertilizers was 241,523.2kg-$CO^2$ and emission intensity was 0.01705kg-$CO^2$. And total emission of organic compound fertilizers was 94,592.66kg-$CO^2$ and emission intensity was 0.01769kg-$CO^2$, respectively.

The Analysis of Insulation Properties with Electron Collision Processes on SF6 Mixture Gases (전자충돌과정을 통한 SF6 혼합기체의 절연특성 분석)

  • So, Soon-Youl
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.2
    • /
    • pp.197-201
    • /
    • 2010
  • $SF_6$ gas would be used in power transformer, GIS (Gas insulated switchgear) and so on because of its electrically superior insulation and chemically stable structure. Recently, the reduction of $SF_6$ is required to avoid global warming and the researches on the dilution of $SF_6$ with other gases have been carried out. $SF_6$ mixture gases with $N_2$ and $C_xF_y$ have drawn attention to the synergy effect. However, in order to understand the mechanism of the synergy effect, it is important to analyze and evaluate properties of mixture gases quantitatively. In this paper, we investigated the mechanism of synergy effect from electron collision processes and electron energy distribution by solving Boltzmann equation with propagator method. Three kinds of gases for dilution of $SF_6$ ($SF_6/N_2$, $SF_6/CF$4 and $SF_6/C_4F_8$) are considered in this simulation. On the properties of $SF_6/N_2$ mixture gas, the variation of reduced electric field was shown highly within 0%~40% mixtures of $SF_6$. And the more low-level electron energy has been distributed, the higher insulation capability has appeared.

Environmental awareness and economical profits of replacing gas turbines in gas compressor stations: A case study of Polkalleh station in Iran

  • Sadrnejad, Amin;Noorollahi, Younes;Sadrnejad, Tohid
    • Environmental Engineering Research
    • /
    • v.21 no.2
    • /
    • pp.132-139
    • /
    • 2016
  • In early 90s the worldwide awareness about the energy crisis and global warming had been increased and emission reduction (by improving energy efficiency), as well as increasing the capacity of clean and renewable energies, showed themselves as the most important steps towards the sustainable development approach. However, investigations on Iran's environmental situation show huge decline in recent decades and apparently there is no sense of urgency about these issues through the vision of Iranian politicians. In this article the idea of replacing the old gas turbines of Polkalleh natural gas compressor station - as one of the main compressor stations of Iran - with newer and more efficient gas turbines is evaluated, emphatically for reducing greenhouse gases emissions and their environmental costs and decreasing natural gas consumption as well. Clearly such idea is costly, but analyzing its economic impacts, huge declines in annual costs and greenhouse gases emissions can be seen as well. So an investment about $95 million can decrease 40% of Polkalleh compressor station annual costs, 25% of natural consumption and 30% of $CO_2$ and $NO_x$ emissions. Besides the simple payback period of this investment is about 2.5 years from the cut-expenses of annual costs.

A study on comparison and implications of port greenhouse gas emission regulations in Korea and the United States with MARPOL (한국과 미국의 항만 온실가스 규제와 MARPOL에 대한 검토 및 시사점)

  • Cheolsoo kim
    • Journal of Korea Port Economic Association
    • /
    • v.40 no.2
    • /
    • pp.107-118
    • /
    • 2024
  • There is broad agreement that emissions from the shipping sector play a large role in the global climate change debate. In theory, there is broad consensus that the industry must take decisive action to reduce greenhouse gas emissions and do its part to combat global warming. The United States has made great strides in addressing emissions from ships, but it is the IMO that plays a key role in shaping global standards for the shipping industry. In the case of Korea, legislation on emissions issues has been prepared, but there are still problems with administrative power. IMO's high-level vision and change, as seen above, requires intensive efforts from industry representatives and requires intensive measures from the government responsible for implementation. It is necessary to consider regulations and the position of the shipping market. However, out of consideration and respect for the urgent reality of global climate change, ship owners, operators and holding companies will need to take voluntary steps to reduce GHG emissions instead of waiting for a new regulatory framework.