• Title/Summary/Keyword: Global search

Search Result 859, Processing Time 0.037 seconds

The Variable Amplitude Coefficient Fireworks Algorithm with Uniform Local Search Operator

  • Li, Lixian;Lee, Jaewan
    • Journal of Internet Computing and Services
    • /
    • v.21 no.3
    • /
    • pp.21-28
    • /
    • 2020
  • Fireworks Algorithm (FWA) is a relatively novel swarm-based metaheuristic algorithm for global optimization. To solve the low-efficient local searching problem and convergence of the FWA, this paper presents a Variable Amplitude Coefficient Fireworks Algorithm with Uniform Local Search Operator (namely VACUFWA). Firstly, the explosive amplitude is used to adjust improving the convergence speed dynamically. Secondly, Uniform Local Search (ULS) enhances exploitation capability of the FWA. Finally, the ULS and Variable Amplitude Coefficient operator are used in the VACUFWA. The comprehensive experiment carried out on 13 benchmark functions. Its results indicate that the performance of VACUFWA is significantly improved compared with the FWA, Differential Evolution, and Particle Swarm Optimization.

COMBINING TRUST REGION AND LINESEARCH ALGORITHM FOR EQUALITY CONSTRAINED OPTIMIZATION

  • Yu, Zhensheng;Wang, Changyu;Yu, Jiguo
    • Journal of applied mathematics & informatics
    • /
    • v.14 no.1_2
    • /
    • pp.123-136
    • /
    • 2004
  • In this paper, a combining trust region and line search algorithm for equality constrained optimization is proposed. At each iteration, we only need to solve the trust region subproblem once, when the trust region trial step can not be accepted, we switch to line search to obtain the next iteration. Hence, the difficulty of repeated solving trust region subproblem in an iterate is avoided. In order to allow the direction of negative curvature, we add second correction step in trust region step and employ nonmonotone technique in line search. The global convergence and local superlinearly rate are established under certain assumptions. Some numerical examples are given to illustrate the efficiency of the proposed algorithm.

Application of exponential bandwidth harmony search with centralized global search for advanced nonlinear Muskingum model incorporating lateral flow (Advanced nonlinear Muskingum model incorporating lateral flow를 위한 exponential bandwidth harmony search with centralized global search의 적용)

  • Kim, Young Nam;Lee, Eui Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.8
    • /
    • pp.597-604
    • /
    • 2020
  • Muskingum, a hydrologic channel flood routing, is a method of predicting outflow by using the relationship between inflow, outflow, and storage. As many studies for Muskingum model were suggested, parameters were gradually increased and the calculation process was complicated by many parameters. To solve this problem, an optimization algorithm was applied to the parameter estimation of Muskingum model. This study applied the Advanced Nonlinear Muskingum Model considering continuous flow (ANLMM-L) to Wilson flood data and Sutculer flood data and compared results of the Linear Nonsingum Model incorporating Lateral flow (LMM-L), and Kinematic Wave Model (KWM). The Sum of Squares (SSQ) was used as an index for comparing simulated and observed results. Exponential Bandwidth Harmony Search with Centralized Global Search (EBHS-CGS) was applied to the parameter estimation of ANLMM-L. In Wilson flood data, ANLMM-L showed more accurate results than LMM-L. In the Sutculer flood data, ANLMM-L showed better results than KWM, but SSQ was larger than in the case of Wilson flood data because the flow rate of Sutculer flood data is large. EBHS-CGS could be appplied to be appplicable to various water resources engineering problems as well as Muskingum flood routing in this study.

Analysis of Global Oscillation via Sync Search in Power Systems (전력계통에서 동조탐색과 광역진동해석)

  • Shim, Kwan-Shik;Nam, Hae-Kon;Kim, Yong-Gu;Moon, Young-Hoan;Kim, Sang-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.7
    • /
    • pp.1255-1262
    • /
    • 2009
  • The present study explained the phenomenon that low frequency oscillation is synchronized with discrete data obtained from a wide area system, and a sync search method. When a disturbance occurs in an power system, various controllers operate in order to maintain synchronization. If the system's damping is poor, low frequency oscillations continue for a long time and the oscillations are synchronized with one another at specific frequency. The present study estimated dominant modes, magnitude and phase of signals by applying parameter estimation methods to discrete signals obtained from an power system, and performed sync search among wide area signals by comparing the estimated data. Sync search was performed by selecting those with the same frequency and damping constant from dominant oscillation modes included in a large number of signals, and comparing their magnitude and phase. In addition, we defined sync indexes in order to indicate the degree of sync between areas in a wide area system. Furthermore, we proposed a wide area sync search method by normalizing mode magnitude in discrete data obtained from critical generator of the wide area. By applying the sync search method and sync indexes proposed in this study to two area systems, we demonstrated that sync scanning can be performed for discrete signals obtained from power systems.

A Study on Image Segmentation and Tracking based on Fuzzy Method (퍼지기법을 이용한 영상분할 및 물체추적에 관한 연구)

  • Lee, Min-Jung;Jin, Tae-Seok;Hwang, Gi-Hyung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.3
    • /
    • pp.368-373
    • /
    • 2007
  • In recent year s there have been increasing interests in real-time object tracking with image information. This dissertation presents a real-time object tracking method through the object recognition based on neural networks that have robust characteristics under various illuminations. This dissertation proposes a global search and a local search method to track the object in real-time. The global search recognizes a target object among the candidate objects through the entire image search, and the local search recognizes and track only the target object through the block search. This dissertation uses the object color and feature information to achieve fast object recognition. The experiment result shows the usefulness of the proposed method is verified.

Improved Global Maximum Power Point Tracking for Photovoltaic System via Cuckoo Search under Partial Shaded Conditions

  • Shi, Ji-Ying;Xue, Fei;Qin, Zi-Jian;Zhang, Wen;Ling, Le-Tao;Yang, Ting
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.287-296
    • /
    • 2016
  • Conventional maximum power point tracking (MPPT) methods are ineffective under partially shaded conditions because multiple local maximum can be exhibited on power-voltage characteristic curve. This study proposes an improved cuckoo search (ICS) MPPT method after investigating the cuckoo search (CS) algorithm applied in solving multiple MPPT. The algorithm eliminates the random step in the original CS algorithm, and the conception of low-power, high-power, normal and marked zones are introduced. The adaptive step adjustment is also realized according to the different stages of the nest position. This algorithm adopts the large step in low-power and marked zones to reduce search time, and a small step in high-power zone is used to improve search accuracy. Finally, simulation and experiment results indicate that the promoted ICS algorithm can immediately and accurately track the global maximum under partially shaded conditions, and the array output efficiency can be improved.

Application of data preprocessing to improve the performance of the metaheuristic optimization algorithm-deep learning combination model (메타휴리스틱 최적화 알고리즘-딥러닝 결합모형의 성능 개량을 위한 데이터 전처리의 적용)

  • Ryu, Yong Min;Lee, Eui Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.114-114
    • /
    • 2022
  • 딥러닝의 학습 및 예측성능을 개선하기 위해서는 딥러닝 기법 내 연산과정의 개선과 함께 학습 및 예측에 사용되는 데이터의 전처리 과정이 중요하다. 본 연구에서는 딥러닝의 성능을 개량하기 위해 제안된 메타휴리스틱 최적화 알고리즘-딥러닝 결합모형과 데이터 전처리 기법을 통해 댐의 수위를 예측하였다. 수위예측을 위해 Multi-Layer Perceptron(MLP), 메타휴리스틱 최적화 알고리즘인 Harmony Search(HS)와 딥러닝을 결합한 MLP using a HS(MLPHS) 및 Exponential Bandwidth Harmony Search with Centralized Global Search(EBHS-CGS)와 딥러닝을 결합한MLP using a EBHS-CGS(MLPEBHS)를 통해 댐의 수위를 예측하였다. 메타휴리스틱 최적화 알고리즘-딥러닝 결합모형의 학습 및 예측성능을 개선하기 위해 학습 및 예측을 위한 자료를 기반으로 데이터 전처리기법을 적용하였다. 적용된 데이터 전처리 기법은 정규화, 수위구간별 사상(Event)분리 및 수위 변동에 대한 자료의 구분이다. 수위예측을 위한 대상유역은 금강유역에 위치한 대청댐으로 선정하였다. 대청댐의 수위예측을 위해 대청댐 상류에 위치하는 수위관측소 3개소를 선정하여 수위자료를 취득하였다. 각 수위관측소에서 취득한 수위자료를 입력자료로 설정하였으며, 대청댐의 수위자료를 출력자료로 설정하여 메타휴리스틱 최적화 알고리즘-딥러닝 모형의 학습을 진행하였다. 각 수위관측소 및 대청댐에서 취득한 수위자료는 2010년부터 2020년까지 총 11년의 일 단위 수위자료이며, 2010년부터 2019년까지의 자료를 학습자료로 사용하였으며, 2020년의 자료를 예측 및 검증자료로 사용하였다.

  • PDF

Global Optimization Using a Sequential Algorithm with Orthogonal Arrays in Discrete Space (이산공간에서 순차적 알고리듬(SOA)을 이용한 전역최적화)

  • Cho, Bum-Sang;Lee, Jeong-Wook;Park, Gyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.858-863
    • /
    • 2004
  • In the optimized design of an actual structure, the design variable should be selected among any certain values or corresponds to a discrete design variable that needs to handle the size of a pre-formatted part. Various algorithms have been developed for discrete design. As recently reported, the sequential algorithm with orthogonal arrays(SOA), which is a local minimum search algorithm in discrete space, has excellent local minimum search ability. It reduces the number of function evaluation using orthogonal arrays. However it only finds a local minimum and the final solution depends on the initial value. In this research, the genetic algorithm, which defines an initial population with the potential solution in a global space, is adopted in SOA. The new algorithm, sequential algorithm with orthogonal arrays and genetic algorithm(SOAGA), can find a global solution with the properties of genetic algorithm and the solution is found rapidly with the characteristics of SOA.

  • PDF

An Enhanced Genetic Algorithm for Global and Local Optimization Search (전역 및 국소 최적화탐색을 위한 향상된 유전 알고리듬의 제안)

  • Kim, Young-Chan;Yang, Bo-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1008-1015
    • /
    • 2002
  • This paper proposes a combinatorial method to compute the global and local solutions of optimization problem. The present hybrid algorithm is the synthesis of a genetic algorithm and a local concentrate search algorithm (simplex method). The hybrid algorithm is not only faster than the standard genetic algorithm, but also gives a more accurate solution. In addition, this algorithm can find both the global and local optimum solutions. An optimization result is presented to demonstrate that the proposed approach successfully focuses on the advantages of global and local searches. Three numerical examples are also presented in this paper to compare with conventional methods.

A Global Optimization Technique for the Capacitor Placement in Distribution Systems (배전계통 커패시터 설치를 위한 전역적 최적화 기법)

  • Rhee, Sang-Bong;Kim, Kyu-Ho;Lee, Sang-Keun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.5
    • /
    • pp.748-754
    • /
    • 2008
  • The general capacitor placement problem is a combinatorial optimization problem having an objective function composed of power losses and capacitor installation costs subject to bus voltage constraints. In this paper, a global optimization technique, which employing the chaos search algorithm, is applied to solve optimal capacitor placement problem with reducing computational effort and enhancing global optimality of the solution. Chaos method in optimization problem searches the global optimal solution on the regularity of chaotic motions and easily escapes from local or near optimal solution than stochastic optimization algorithms. The chaos optimization method is tested on 9 buses and 69 buses system to illustrate the effectiveness of the proposed method.