• 제목/요약/키워드: Global geopotential model

검색결과 22건 처리시간 0.025초

The Global Geopotential Models in the Region of Korean Peninsula

  • Yun, Hong-Sic;Adam, Jozsef
    • 한국측량학회지
    • /
    • 제12권1호
    • /
    • pp.95-106
    • /
    • 1994
  • 지오이드 모델링에 필요한 기준면으로 사용되는 여러가지 지오포텐셜모델들을 시험하여 한반도 주변의 최적기준면을 결정하고자 하였다. 시험은 지오포텐셜모델들로부터 계산된 중력이상과 실제측정한 중력 이상의 차를 검토하였으며, 지오포텐셜모델들간의 중력이상과 지오이드고의 차를 비교·검토하였다. 또한 GPS 측량데이타로부터 계산된 지오이드고와 지오포텐셜모델로부터 계산된 지오이드고를 검토하였다. 시험결과 OSU91A 모델이 한반도 주변에서의 기준면으로 적합하다는 것을 알 수 있었다.

  • PDF

Precision Evaluation of Recent Global Geopotential Models based on GNSS/Leveling Data on Unified Control Points

  • Lee, Jisun;Kwon, Jay Hyoun
    • 한국측량학회지
    • /
    • 제38권2호
    • /
    • pp.153-163
    • /
    • 2020
  • After launching the GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) which obtains high-frequency gravity signal using a gravity gradiometer, many research institutes are concentrating on the development of GGM (Global Geopotential Model) based on GOCE data and evaluating its precision. The precision of some GGMs was also evaluated in Korea. However, some studies dealt with GGMs constructed based on initial GOCE data or others applied a part of GNSS (Global Navigation Satellite System) / Leveling data on UCPs (Unified Control Points) for the precision evaluation. Now, GGMs which have a higher degree than EGM2008 (Earth Gravitational Model 2008) are available and UCPs were fully established at the end of 2019. Thus, EIGEN-6C4 (European Improved Gravity Field of the Earth by New techniques - 6C4), GECO (GOCE and EGM2008 Combined model), XGM2016 (Experimental Gravity Field Model 2016), SGG-UGM-1, XGM2019e_2159 were collected with EGM2008, and their precisions were assessed based on the GNSS/Leveling data on UCPs. Among GGMs, it was found that XGM2019e_2159 showed the minimum difference compared to a total of 5,313 points of GNSS/Leveling data. It is about a 1.5cm and 0.6cm level of improvement compare to EGM2008 and EIGEN-6C4. Especially, the local biases in the northern part of Gyeonggi-do, Jeju island shown in the EGM2008 was removed, so that both mean and standard deviation of the difference of XGM2019e_2159 to the GNSS/Leveling are homogeneous regardless of region (mountainous or plain area). NGA (National Geospatial-Intelligence Agency) is currently in progress in developing EGM2020 and XGM2019e_2159 is the experimentally published model of EGM2020. Therefore, it is expected that the improved GGM will be available shortly so that it is necessary to verify the precision of new GGMs consistently.

GPS/leveling 데이터에 의한 EGM2008 지구중력장모델의 평가 (Evaluation of EGM2008 earth geopotential model using GPS/leveling data)

  • 이석배;김진수;김철영
    • 대한공간정보학회지
    • /
    • 제16권3호
    • /
    • pp.117-126
    • /
    • 2008
  • 지구중력장모델은 지오이드 모델링에 있어서 기준면을 결정하기 위하여 사용되어 왔으며, 1980년대 이후로 많은 전지구적 지오포텐셜모델이 개발되었다. 오늘날 EGM96과 EIGEN-GL04C 모델이 전세계적으로 가장 많이 사용되어 왔으나 EGM2008이라고 불리우는 지구중력장모델이 미국의 NGA에 의해 올해 개발되었다. 본 연구에서는 이러한 세 개의 지구중력장모델에 대하여 구면조화분석을 실시하고 그 결과를 비교하고자 하였다. 따라서 구면조화분석은 한반도 일원에 대하여 $1'{\times}1'$격자간격으로 EGM96과 EIGEN-GL04C 모델은 최대차수 360으로, EGM2008의 경우 차수를 360, 720, 1440, 2190으로 변화시켜 가면서 실시하였다. 정확도 평가를 위하여 464점의 GPS/leveling 데이터에서 기하학적 지오이드고가 계산되었으며, 평가결과 EGM2008 모델이 EGM96이나 EIGEN-GL04C 모델에 비하여 상당한 수준으로 정확도를 개선시킴을 알 수 있었으며 한반도 일원에서 14cm 이내의 정밀도로, LSC적합 이후에는 5.5cm의 정밀도로 지오이드고를 계산할 수 있음을 알 수 있었다.

  • PDF

Gps/leveling 데이터에 의한 기하학적 지오이드고의 산출 (Calaulation of Geometric Geoidal Heights Using Gps/leveling Data in Study Area)

  • 이석배;황용진;이재원
    • 한국측량학회지
    • /
    • 제22권1호
    • /
    • pp.45-52
    • /
    • 2004
  • 지오이드고를 얻는 방법은 여러 가지가 있으며, 수준점에서 GPS측량을 실시한다면 기하학적 지오이드고를 얻을 수 있다. 본 연구의 목적은 시험지역에서 Gps/leveling데이터를 이용하여 기하학적 지오이드고를 산출한 후 이것으로 한반도 일원에서의 지구중력장모델과 지역모델을 평가하고자 하는 것이다. 본 연구를 위하여 군산에서 전주까지의 수준노선에 대하여 GPS측량을 실시하였으며, 한반도 일원에 대하여 OSU91A, EGM96, EGM96m의 지구중력장 모델에 대하여 똑같은 조건으로 구면조화분석에 의한 지오이드고를 산출하였다 그리고 이 지오이드고와 기하학적 지오이드고의 편차를 구하였으며 또 KOGD2002중력지오이드 모델에서 추출해 낸 지오이드고와의 편차도 계산하였다. 계산결과 기하학적 지오이드고와의 편차는 EGM96m 모델이 최소로 나타났다.

한국형모델의 항공기 관측 온도의 정적 편차 보정 연구 (A Study of Static Bias Correction for Temperature of Aircraft based Observations in the Korean Integrated Model)

  • 최다영;하지현;황윤정;강전호;이용희
    • 대기
    • /
    • 제30권4호
    • /
    • pp.319-333
    • /
    • 2020
  • Aircraft observations constitute one of the major sources of temperature observations which provide three-dimensional information. But it is well known that the aircraft temperature data have warm bias against sonde observation data, and therefore, the correction of aircraft temperature bias is important to improve the model performance. In this study, the algorithm of the bias correction modified from operational KMA (Korea Meteorological Administration) global model is adopted in the preprocessing of aircraft observations, and the effect of the bias correction of aircraft temperature is investigated by conducting the two experiments. The assimilation with the bias correction showed better consistency in the analysis-forecast cycle in terms of the differences between observations (radiosonde and GPSRO (Global Positioning System Radio Occultation)) and 6h forecast. This resulted in an improved forecasting skill level of the mid-level temperature and geopotential height in terms of the root-mean-square error. It was noted that the benefits of the correction of aircraft temperature bias was the upper-level temperature in the midlatitudes, and this affected various parameters (winds, geopotential height) via the model dynamics.

GloSea5 모형의 계절내-계절(S2S) 예측성 검정: Part 1. 북반구 중위도 지위고도 (Subseasonal-to-Seasonal (S2S) Prediction Skills of GloSea5 Model: Part 1. Geopotential Height in the Northern Hemisphere Extratropics)

  • 김상욱;김혜라;송강현;손석우;임유나;강현석;현유경
    • 대기
    • /
    • 제28권3호
    • /
    • pp.233-245
    • /
    • 2018
  • This study explores the Subseasonal-to-Seasonal (S2S) prediction skills of the Northern Hemisphere mid-latitude geopotential height in the Global Seasonal forecasting model version 5 (GloSea5) hindcast experiment. The prediction skills are quantitatively verified for the period of 1991~2010 by computing the Anomaly Correlation Coefficient (ACC) and Mean Square Skill Score (MSSS). GloSea5 model shows a higher prediction skill in winter than in summer at most levels regardless of verification methods. Quantitatively, the prediction limit diagnosed with ACC skill of 500 hPa geopotential height, averaged over $30^{\circ}N{\sim}90^{\circ}N$, is 11.0 days in winter, but only 9.1 days in summer. These prediction limits are primarily set by the planetary-scale eddy phase errors. The stratospheric prediction skills are typically higher than the tropospheric skills except in the summer upper-stratosphere where prediction skills are substantially lower than upper-troposphere. The lack of the summer upper-stratospheric prediction skill is caused by zonal mean error, perhaps strongly related to model mean bias in the stratosphere.

WRF 기반 공군 단기 수치 예보 시스템 : 2009년 하계 모의 성능 검증 (WRF-Based Short-Range Forecast System of the Korea Air Force : Verification of Prediction Skill in 2009 Summer)

  • 변의용;홍성유;신혜윰;이지우;송재익;함숙정;김좌겸;김형우;김종석
    • 대기
    • /
    • 제21권2호
    • /
    • pp.197-208
    • /
    • 2011
  • The objective of this study is to describe the short-range forecast system of the Korea Air Force (KAF) and to verificate its performace in 2009 summer. The KAF weather prediction model system, based on the Weather Research and Forecasting (WRF) model (i.e., the KAF-WRF), is configured with a parent domain overs East Asia and two nested domains with the finest horizontal grid size of 2 km. Each domain covers the Korean peninsula and South Korea, respectively. The model is integrated for 84 hour 4 times a day with the initial and boundary conditions from National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) data. A quantitative verification system is constructed for the East Asia and Korean peninsula domains. Verification variables for the East Asia domain are 500 hPa temperature, wind and geopotential height fields, and the skill score is calculated using the difference between the analysis data from the NCEP GFS model and the forecast data of the KAF-WRF model results. Accuracy of precipitation for the Korean penisula domain is examined using the contingency table that is made of the KAF-WRF model results and the KMA (Korea Meteorological Administraion) AWS (Automatic Weather Station) data. Using the verification system, the operational model and parallel model with updated version of the WRF model and improved physics process are quantitatively evaluated for the 2009 summer. Over the East Aisa region, the parallel experimental model shows the better performance than the operation model. Errors of the experimental model in 500 hPa geopotential height near the Tibetan plateau are smaller than errors in the operational model. Over the Korean peninsula, verification of precipitation prediction skills shows that the performance of the operational model is better than that of the experimental one in simulating light precipitation. However, performance of experimental one is generally better than that of operational one, in prediction.

GPS/leveling 데이터에 의한 기하학적 지오이드고의 산출 (Calaulation of geometric geoidal heights using GPS/leveling data in study area)

  • 이석배
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2003년도 추계학술발표회 논문집
    • /
    • pp.27-31
    • /
    • 2003
  • It can be classified in various methods to get the geoidal heights. It can be achieved geometric geoidal heights if we do GPS surveying in leveling point. The aims of this paper are calculation of geometric geoidal heights using GPS/leveling data in study area and evaluation of the global and local geoid models in and around Korean peninsula. For this study, study area was selected in the leveling line from Kunsan to Chonju city and GPS surveying was accomplished in the leveling line. And, also spherical harmonic analysis was made on the three global geopotential models, OSU91A, EGM96, EGM96m under same condition and KOGD2002, Korean gravimetric geoid model was made in this study The results shows that EGM96m is the best model because the differences between geoidal heights of EGM96m and geometric geoidal heights of GPS/Leveling data appear the smallest value among them.

  • PDF

기상청 기후예측시스템 개선에 따른 월별 앙상블 예측자료 성능평가 (Performance Assessment of Monthly Ensemble Prediction Data Based on Improvement of Climate Prediction System at KMA)

  • 함현준;이상민;현유경;김윤재
    • 대기
    • /
    • 제29권2호
    • /
    • pp.149-164
    • /
    • 2019
  • The purpose of this study is to introduce the improvement of current operational climate prediction system of KMA and to compare previous and improved that. Whereas the previous system is based on GloSea5GA3, the improved one is built on GloSea5GC2. GloSea5GC2 is a fully coupled global climate model with an atmosphere, ocean, sea-ice and land components through the coupler OASIS. This is comprised of component configurations Global Atmosphere 6.0 (GA6.0), Global Land 6.0 (GL6.0), Global Ocean 5.0 (GO5.0) and Global Sea Ice 6.0 (GSI6.0). The compositions have improved sea-ice parameters over the previous model. The model resolution is N216L85 (~60 km in mid-latitudes) in the atmosphere and ORCA0.25L75 ($0.25^{\circ}$ on a tri-polar grid) in the ocean. In this research, the predictability of each system is evaluated using by RMSE, Correlation and MSSS, and the variables are 500 hPa geopotential height (h500), 850 hPa temperature (t850) and Sea surface temperature (SST). A predictive performance shows that GloSea5GC2 is better than GloSea5GA3. For example, the RMSE of h500 of 1-month forecast is decreased from 23.89 gpm to 22.21 gpm in East Asia. For Nino3.4 area of SST, the improvements to GloSeaGC2 result in a decrease in RMSE, which become apparent over time. It can be concluded that GloSea5GC2 has a great performance for seasonal prediction.

위성자료가 기상청 전지구 통합 분석 예측 시스템에 미치는 효과 (The Impact of Satellite Observations on the UM-4DVar Analysis and Prediction System at KMA)

  • 이주원;이승우;한상옥;이승재;장동언
    • 대기
    • /
    • 제21권1호
    • /
    • pp.85-93
    • /
    • 2011
  • UK Met Office Unified Model (UM) is a grid model applicable for both global and regional model configurations. The Met Office has developed a 4D-Var data assimilation system, which was implemented in the global forecast system on 5 October 2004. In an effort to improve its Numerical Weather Prediction (NWP) system, Korea Meteorological Administration (KMA) has adopted the UM system since 2008. The aim of this study is to provide the basic information on the effects of satellite data assimilation on UM performance by conducting global satellite data denial experiments. Advanced Tiros Operational Vertical Sounder (ATOVS), Infrared Atmospheric Sounding Interferometer (IASI), Special Sensor Microwave Imager Sounder (SSMIS) data, Global Positioning System Radio Occultation (GPSRO) data, Air Craft (CRAFT) data, Atmospheric Infrared Sounder (AIRS) data were assimilated in the UM global system. The contributions of assimilation of each kind of satellite data to improvements in UM performance were evaluated using analysis data of basic variables; geopotential height at 500 hPa, wind speed and temperature at 850 hPa and mean sea level pressure. The statistical verification using Root Mean Square Error (RMSE) showed that most of the satellite data have positive impacts on UM global analysis and forecasts.