• Title/Summary/Keyword: Global earth observation

Search Result 120, Processing Time 0.03 seconds

A Study on Design of Metadata for Global Earth Observation Data (지구관측자료 메타데이터 설계에 관한 연구)

  • Ahn, Bu-Young;Han, Jeong-Min;Kwon, Oh-Kyoung;Joh, Min-Su
    • Journal of Information Management
    • /
    • v.39 no.2
    • /
    • pp.211-234
    • /
    • 2008
  • Recently, the frequency and scale of natural disasters such as typhoons, flood, earthquakes, and tidal waves from earthquakes has been increasing. Several nations have recognized that earth observation is essential for protecting the Earth's environment. However, as the data format from earth observation varies depending on areas, institutes, and countries, sharing and exchange between data is difficult. Thus, we have a metadata standardization scheme suitable for the domestic situation to allow exchange of data between societal benefit areas with reference to principles of data sharing and exchange that are discussed on GEO (Group on Earth Observation). We have also designed metadata schemes required to identify the metadata situation of earth observation data being used for 9 societal benefit areas of GEOSS(Global Earth Observation System of Systems).

A study on possibility of land vegetation observation with Mid-resolution sensor

  • Honda, Y.;Moriyama, M.;Ono, A.;Kajiwara, K.
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.349-352
    • /
    • 2007
  • The Fourth Assessment Report of IPCC predicted that global warming is already happening and it should be caused from the increase of greenhouse gases by the extension of human activities. These global changes will give a serious influence for human society. Global environment can be monitored by the earth observation using satellite. For the observation of global climate change and resolving the global warming process, satellite should be useful equipment and its detecting data contribute to social benefits effectively. JAXA (former NASDA) has made a new plan of the Global Change Observation Mission (GCOM) for monitoring of global environmental change. SGLI (Second Generation GLI) onboard GCOM-C (Climate) satellite, which is one of this mission, provides an optical sensor from Near-DV to TIR. Characteristic specifications of SGLI are as follows; 1) 250 m resolutions over land and area along the shore, 2) Three directional polarization observation (red and NIR), and 3) 500 m resolutions temperature over land and area along shore. These characteristics are useful in many fields of social benefits. For example, multi-angular observation and 250 m high frequency observation give new knowledge in monitoring of land vegetation. It is expected that land products with land aerosol information by polarization observation are improved remarkably. We are studying these possibilities by ground data and satellite data.

  • PDF

Current status and Prospects on the Aerial Monitoring (국토 공중모니터링 현황과 발전방향)

  • Shin, Hyu-Seok;Park, Chung-Ki;Kim, Yeon-Mi;Hwang, Sun-Young;Park, Key-Ho
    • Spatial Information Research
    • /
    • v.16 no.2
    • /
    • pp.173-192
    • /
    • 2008
  • Recent climate fluctuation and environmental change at global scale are causing more incidences of disasters and calamities over the world. In a response to this environmental crisis, international collaboration for Earth Observation(EO) is obtaining more significance in order to understand, watch, and forecast changes in the earth system. As such, aerial monitoring based on remotely sensed data, indispensable for EO, is also drawing more attentions. In this context, we discuss diverse aspects of future developments in the Korean domestic system for aerial monitoring. This paper first thoroughly examines current status of national and international collaboration system arid research of aerial monitoring. It then suggests specific development plans for four critical dimensions such as research, organization, institutional systems, and strategies. Our study would facilitate systematically establishing policies for aerial monitoring in Korea and creating a domestic GEOSS(Global Earth Observation System of Systems) in the near future.

  • PDF

DEVELOPMENT OF DATA INTEGRATION AND INFORMATION FUSION INFRASTRUCTURE FOR EARTH OBSERVATION

  • Takagi Mikio;Kltsuregawa Masaru;Shibasaki Ryousuke;Ninomiya Seishi;Koike Toshio
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.22-25
    • /
    • 2005
  • The 10 Year Implementation Plan for a Global Earth Observation System of Systems (GEOSS), which was endorsed at the Third Earth Observation Summit in Brussels in February, 2005, emphasizes the importance of data management facilities for diverse and large-volume Earth Observation data from inhomogeneous information sources. A three year research plan for addressing this key target of GEOSS has just approved as the first step by the Japanese government. The goals of this research are, (1) to develop a data management core system consisting of data integration and information fusion functions and interoperability and information service functions; (2) to establish data and information flows between data providers and users; (3) to promote application studies of data integration and information fusion, especially in the fields of weather forecasting, flood forecasting, agricultural management, and climate variability and changes. The research group involves leading scientists on information science and technology, who have been developing giant data archive servers, storage area networks, metadata models, ontology for the earth observations. They are closely cooperating with scientists on earth sciences, water resources management, and agriculture, and establishing an effective collaborative research framework.

  • PDF

A Survey Study for Establishment of National Global Earth Observation System of Systems (국가 전지구관측시스템 구축을 위한 기초조사연구)

  • Ahn, bu-young;Joh, min-su
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2007.11a
    • /
    • pp.80-83
    • /
    • 2007
  • Entering 21st century, various natural disasters have been caused by the scorching heat wave, earthquake, tsunami, typhoon and so on. The casuality and damages have been drastically increased in terms of the frequency and magnitude. Therefore, 50 nations around the world agreed to build up the GEO(Global Earth Observation) in charge of the earth observation for the understanding of the earth system changes, monitoring and prediction and it is on operation. To keep the pace with GEOSS for the cooperation of Science & Technology and to successfully achieve the GEOSS project, KGEO office was established and has been on its duty. Moreover, for more prosperous building of the GEOSS, in cooperation with KGEO and KISTI(Korea Institute of Science and Technology Information), we've conducted the survey of the domestic situation about 9 societal benefit areas of the GEOSS. This survey consists of 5 sections as follows: the standardization, the information system management, the raw data and metadata, the infrastructure, and the others. This survey results will be used as the basic material for establishing the National Global Earth Observation System.

  • PDF

Optical telescope with spectro-polarimetric camera on the moon

  • KIM, Ilhoon;HONG, Sukbum;KIM, Joohyun;Seo, Haingja;Kim, Jeong hyun;Choi, Hwajin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.78.1-78.1
    • /
    • 2021
  • A Lunar observatory not only provides ideas and experiences for space settlements from the Moon to Mars, but also puts the telescope in an optimal position to compete with space telescopes. Earth observation on the Moon's surface has the advantage of no atmospheric scattering or light pollution and is a stable fuel-free observation platform, allowing all longitude and latitude of the Earth to be observed for a month. Observing the entire globe with a single observation instrument, which has never been attempted before, and calculating the global albedo will significantly help predict the weather and climate change. Spectropolarimetric observations can reveal the physical and chemical properties of the Earth's atmosphere, track the global distribution and migration path of aerosols and air pollutants, and can also help detect very small space debris of which the risk has increased recently. In addition, the zodiacal light, which is difficult to observe from Earth, is very easy to observe from the lunar observatory, so it will be an opportunity to reveal the origin of the solar system and take a step closer to understanding the exoplanet system. In conclusion, building and developing a lunar observatory will be a groundbreaking study to become the world's leader that we have never tried before as a first step in expanding human experience and intelligence.

  • PDF

Global environment change monitoring using the next generation satellite sensor, SGLI/GCOM-C

  • HONDA Yoshiaki
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.11-13
    • /
    • 2005
  • The Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) concluded that many collective observations gave a aspect of a global warming and other changes in the climate system. Future earth observation using satellite data should monitor global climate change, and should contribute to social benefits. Especially, human activities has given the big impacts to earth environment This is a very complex affair, and nature itself also impacts the clouds, namely the seasonal variations. JAXA (former NASDA) has the plan of the Global Change Observation Mission (GCOM) for monitoring of global environmental change. SGLI (Second Generation GLI) onboard GCOM-C (Climate) satellite, which is one of this mission, is an optical sensor from Near-UV to TIR. This sensor is the GLI follow-on sensor, which has the various new characteristics. Polarized/multi-directional channels and 250m resolution channels are the unique characteristics on this sensor. This sensor can be contributed to clarification of coastal change in sea surface. This paper shows the introduction of the unique aspects and characteristics of the next generation satellite sensor, SGLIIGCOM-C, and shows the preliminary research for this sensor.

  • PDF

Calibration and Validation Activities for Earth Observation Mission Future Evolution for GMES

  • LECOMTE Pascal
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.237-240
    • /
    • 2005
  • Calibration and Validation are major element of any space borne Earth Observation Mission. These activities are the major objective of the commissioning phases but routine activities shall be maintained during the whole mission in order to maintain the quality of the product delivered to the users or at least to fully characterise the evolution with time of the product quality. With the launch of ERS-l in 1991, the European Space Agency decided to put in place a group dedicated to these activities, along with the daily monitoring of the product quality for anomaly detection and algorithm evolution. These four elements are all strongly linked together. Today this group is fully responsible for the monitoring of two ESA missions, ERS-2 and Envisat, for a total of 12 instruments of various types, preparing itself for the Earth Explorer series of five. other satellites (Cryosat, Goce, SMOS, ADM-Aeolus, Swarm) and at various levels in past and future Third Party Missions such as Landsat, J-ERS, ALOS and KOMPSAT. The Joint proposal by the European Union and the European Space Agency for a 'Global Monitoring for Environment and Security' project (GMES), triggers a review of the scope of these activities in a much wider framework than the handling of single missions with specific tools, methods and activities. Because of the global objective of this proposal, it is necessary to put in place Multi-Mission Calibration and Validation systems and procedures. GMES Calibration and Validation activities will rely on multi source data access, interoperability, long-term data preservation, and definition standards to facilitate the above objectives. The scope of this presentation is to give an overview of the current Calibration and Validation activities at ESA, and the planned evolution in the context of GMES.

  • PDF

Development Plan of Package-type Instruments for Next-Generation Space Weather Observation Network

  • Choi, Seonghwan;Kwak, Young-Sil;Lee, Wookyoung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.77.2-77.2
    • /
    • 2021
  • Starting with the observation of sunspots in 1987, Korea Astronomy and Space Science Institute (KASI) has developed and installed various ground-based instruments for space weather research in Korea. Recently, SNIPE and CODEX are also being developed as space-based instruments. Expansion of the observation area and simultaneous observation have become important in the study of space weather. We have started Next-Generation Space Weather Observation Network Project this year. In order to establish a solar observation network, we planned to develop the Next Solar Telescope (NxST) which is a solar imaging spectrograph, and to install three NxST in the northern hemisphere. And we also planned to develop the Thermosphere-Ionosphere-Mesosphere Observation System (TIMOS), Global Navigation Satellite System (GNSS), and Geomagnetic packages, and install them in about ten sites over the world, for the purpose of establishing a global observation network for the near-earth space weather. We can take simultaneously observed space weather data in the global area, and are expecting it will play an important role in the international community for space weather research. We also have a strategy to secure observational technologies necessary for big space missions in the future, through this project.

  • PDF

A study on global environmental monitoring by using ADEOS-II GLI data

  • Yamamoto, Hirokazu;Hashimoto, Toshiaki;Mitomi, Yasushi;Yoshioka, Hiroki;Honda, Yoshiaki;Igarashi, Tamotsu
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.482-484
    • /
    • 2003
  • GLI on boarded ADEOS-II satellite allows us to observe vegetation status in the two different resolutions simultaneously, because of thirty 1km resolution channels and six 250m resolution channels. There are four GLI land higher level products from these channels ; those are PGCP (Precise Geometric Correction Parameter), L2A_LC (TOA reflectance), ACLC (atmospheric corrected reflectance), and VGI (NDVI and EVI). This paper shows ADEOS-II GLI land data processing, and some of the latest results.

  • PDF