• Title/Summary/Keyword: Global distortion

Search Result 103, Processing Time 0.027 seconds

Choice of Efficient Sampling Rate for GNSS Signal Generation Simulators

  • Jinseon Son;Young-Jin Song;Subin Lee;Jong-Hoon Won
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.3
    • /
    • pp.237-244
    • /
    • 2023
  • A signal generation simulator is an economical and useful solution in Global Navigation Satellite System (GNSS) receiver design and testing. A software-defined radio approach is widely used both in receivers and simulators, and its flexible structure to adopt to new signals is ideally suited to the testing of a receiver and signal processing algorithm in the signal design phase of a new satellite-based navigation system before the deployment of satellites in space. The generation of highly accurate delayed sampled codes is essential for generating signals in the simulator, where its sampling rate should be chosen to satisfy constraints such as Nyquist criteria and integer and non-commensurate properties in order not to cause any distortion of original signals. A high sampling rate increases the accuracy of code delay, but decreases the computational efficiency as well, and vice versa. Therefore, the selected sampling rate should be as low as possible while maintaining a certain level of code delay accuracy. This paper presents the lower limits of the sampling rate for GNSS signal generation simulators. In the simulation, two distinct code generation methods depending on the sampling position are evaluated in terms of accuracy versus computational efficiency to show the lower limit of the sampling rate for several GNSS signals.

A Novel Scheme for Code Tracking Bias Mitigation in Band-Limited Global Navigation Satellite Systems (위성 기반 측위 시스템에서의 부호 추적편이 완화 기법)

  • Yoo, Seung-Soo;Kim, Sang-Hun;Yoon, Seok-Ho;Song, Iich-Ho;Kim, Sun-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.10C
    • /
    • pp.1032-1041
    • /
    • 2007
  • The global navigation satellite system (GNSS), which is the core technique for the location based service, adopts the direct sequence/spread spectrum (DS/SS) as its modulation method. The success of a DS/SS system depends on the synchronization between the received and locally generated pseudo noise (PN) signals. As a step in the synchronization process, the tacking scheme performs fine adjustment to bring the phase difference between the two PN signals to zero. The most widely used tracking scheme is the delay locked loop with early minus late discriminator (EL-DLL). In the ideal case, the EL-DLL is the best estimator among various DLL. However, in the band-limited multipath environment, the EL-DLL has tracking bias. In this paper, the timing offset range of correlation function is divided into advanced offset range (AOR) and delayed offset range (DOR) centering around the correct synchronization time point. The tracking bias results from the following two reasons: symmetry distortion between correlation values in AOR and DOR, and mismatch between the time point corresponding to the maximum correlation value and the synchronization time point. The former and latter are named as the type I and type II tracking bias, respectively. In this paper, when the receiver has finite bandwidth in the presence of multipath signals, it is shown that the type II tracking bias becomes a more dominant error factor than the type I tracking bias, and the correlation values in AOR are not almost changed. Exploiting these characteristics, we propose a novel tracking bias mitigation scheme and demonstrate that the tracking accuracy of the proposed scheme is higher than that of the conventional scheme, both in the presence and absence of noise.

Color Image Rendering using A Modified Image Formation Model (변형된 영상 생성 모델을 이용한 칼라 영상 보정)

  • Choi, Ho-Hyoung;Yun, Byoung-Ju
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.1
    • /
    • pp.71-79
    • /
    • 2011
  • The objective of the imaging pipeline is to transform the original scene into a display image that appear similar, Generally, gamma adjustment or histogram-based method is modified to improve the contrast and detail. However, this is insufficient as the intensity and the chromaticity of illumination vary with geometric position. Thus, MSR (Multi-Scale Retinex) has been proposed. the MSR is based on a channel-independent logarithm, and it is dependent on the scale of the Gaussian filter, which varies according to input image. Therefore, after correcting the color, image quality degradations, such as halo, graying-out, and dominated color, may occur. Accordingly, this paper presents a novel color correction method using a modified image formation model in which the image is divided into three components such as global illumination, local illumination, and reflectance. The global illumination is obtained through Gaussian filtering of the original image, and the local illumination is estimated by using JND-based adaptive filter. Thereafter, the reflectance is estimated by dividing the original image by the estimated global and the local illumination to remove the influence of the illumination effects. The output image is obtained based on sRGB color representation. The experiment results show that the proposed method yields better performance of color correction over the conventional methods.

Transform Skip Mode Fast Decision Method for HEVC Encoding (HEVC 부호화를 위한 변환생략 모드 고속 선택 방법)

  • Yang, Seungha;Shim, Hiuk Jae;Lee, Dahee;Jeon, Byeungwoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.4
    • /
    • pp.172-179
    • /
    • 2014
  • HEVC (High Efficiency Video Coding) fine-tuned many existing coding tools and adopted also many new coding techniques. As a result, HEVC has accomplished about 2 times of compression efficiency enhancement compared to the existing video coding standard of H.264/AVC. One of the newly adopted tools in HEVC is the transform skip scheme which performs quantization without transform. This technique improves coding efficiency especially with computer-generated images. However, the unavailability of global or local properties of general video signals demands encoder to decide whether performing transform or not for each TU (Transform Unit). The necessity of computing rate-distortion costs for this decision is one reason to increase encoder complexity. In this paper, a fast transform skip mode decision method is proposed, which is based on the fast decision of rate-distortion cost calculation for transform skip mode, by considering frequency characteristics of residual signal. The proposed method can reduce $4{\times}4$ TU encoding time by about 27.1% with only about 0.03% consequential decrement in BDBR.

Design of a Dual-Band GPS Array Antenna (이중 대역 GPS 배열 안테나 설계)

  • Kim, Heeyoung;Byun, Gangil;Son, Seok Bo;Choo, Hosung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.7
    • /
    • pp.678-685
    • /
    • 2013
  • In this paper, we propose a design of dual-band patch antennas for Global Positioning System(GPS) applications, and the designed antenna is used as an individual element of GPS arrays. A low distortion and a high isolation of the array are achieved by adjusting rotating angles of each array element. The antenna consists of two radiating patches that operate in the GPS $L_1$ and $L_2$ bands, and the two ports feeding network with a hybrid chip coupler is adopted to achieve a broad circular polarization(CP) bandwidth. The rotating angles of each antenna element are varied with four directions(${\phi}=0^{\circ}$, ${\phi}=90^{\circ}$, ${\phi}=180^{\circ}$, ${\phi}=270^{\circ}$) in order to minimize the pattern distortion and maximize the isolation among array elements. The measurement shows bore-sight gains of 0.3 dBic($L_1$) and -1.0 dBic($L_2$) for the center element. Bore-sight gains of 1.6 dBic($L_1$) and 1.0 dBic($L_2$) are observed for the edge element. This results demonstrate that the proposed antenna is suitable for GPS array applications.

A study on speech enhancement using complex-valued spectrum employing Feature map Dependent attention gate (특징 맵 중요도 기반 어텐션을 적용한 복소 스펙트럼 기반 음성 향상에 관한 연구)

  • Jaehee Jung;Wooil Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.6
    • /
    • pp.544-551
    • /
    • 2023
  • Speech enhancement used to improve the perceptual quality and intelligibility of noise speech has been studied as a method using a complex-valued spectrum that can improve both magnitude and phase in a method using a magnitude spectrum. In this paper, a study was conducted on how to apply attention mechanism to complex-valued spectrum-based speech enhancement systems to further improve the intelligibility and quality of noise speech. The attention is performed based on additive attention and allows the attention weight to be calculated in consideration of the complex-valued spectrum. In addition, the global average pooling was used to consider the importance of the feature map. Complex-valued spectrum-based speech enhancement was performed based on the Deep Complex U-Net (DCUNET) model, and additive attention was conducted based on the proposed method in the Attention U-Net model. The results of the experiments on noise speech in a living room environment showed that the proposed method is improved performance over the baseline model according to evaluation metrics such as Source to Distortion Ratio (SDR), Perceptual Evaluation of Speech Quality (PESQ), and Short Time Object Intelligence (STOI), and consistently improved performance across various background noise environments and low Signal-to-Noise Ratio (SNR) conditions. Through this, the proposed speech enhancement system demonstrated its effectiveness in improving the intelligibility and quality of noisy speech.

Fast Game Encoder Based on Scene Descriptor for Gaming-on-Demand Service (주문형 게임 서비스를 위한 장면 기술자 기반 고속 게임 부호화기)

  • Jeon, Chan-Woong;Jo, Hyun-Ho;Sim, Dong-Gyu
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.7
    • /
    • pp.849-857
    • /
    • 2011
  • Gaming on demand(GOD) makes people enjoy games by encoding and transmitting game screen at a server side, and decoding the video at a client side. In this paper, we propose a fast game video encoder for multiple users over network with low-powered devices. In the proposed system, the computational complexity of game encoders is reduced by using scene descriptors, which consists of an object motion vector, global motion, and scene change. With additional information from game engines, the proposed encoder does not need to perform various complexity processes such as motion estimation and ratedistortion optimization. The motion estimation and rate-distortion optimization skipped by scene descriptors. We found that the proposed method improved 192 % in terms of FPS, compared with x264 software. With partial assembly code, we also improved coding speed by 86 % in terms of FPS. We found that the proposed fast encoder could encode over 60 FPS for real-time GOD applications.

Long-Lasting and Highly Efficient TRIAC Dimming LED Driver with a Variable Switched Capacitor

  • Lee, Eun-Soo;Choi, Bo-Hwan;Nguyen, Duy Tan;Choi, Byeung-Guk;Rim, Chun-Taek
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1268-1276
    • /
    • 2016
  • A triode for alternating current (TRIAC) dimming light emitting diode (LED) driver, which adopts a variable switched capacitor for LED dimming and LED power regulation, is proposed in this paper. The proposed LED driver is power efficient, reliable, and long lasting because of the TRIAC switch that serves as its main switch. Similar to previous TRIAC dimmers for lamps, turn-on timing of a TRIAC switch can be controlled by a volume resistor, which modulates the equivalent capacitance of the proposed variable switched capacitor. Thus, LED power regulation against source voltage variation and LED dimming control can be achieved by the proposed LED driver while meeting the global standards for power factor (PF) and total harmonic distortion (THD). The long life and high power efficiency of the proposed LED driver make it appropriate for industrial lighting applications, such as those for streets, factories, parking garages, and emergency stairs. The detailed analysis of the proposed LED driver and its design procedure are presented in this paper. A prototype of 80 W was fabricated and verified by experiments, which showed that the efficiency, PF, and THD at Vs = 220 V are 93.8%, 0.95, and 22.5%, respectively; 65 W of LED dimming control was achieved with the volume resistor, and the LED power variation was well mitigated below 3.75% for 190 V < Vs < 250 V.

TRIZ-based Improvement of Glass Thermal Deformation in OLED Deposition Process (트리즈 기반 OLED 증착 공정의 글래스 열 변형 개선)

  • Lee, Woo-Sung;Choi, Jin Young
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.1
    • /
    • pp.114-123
    • /
    • 2017
  • The global small and mid-sized display market is changing from thin film transistor-liquid crystal display to organic light emitting diode (OLED). Reflecting these market conditions, the domestic and overseas display panel industry is making great effort to innovate OLED technology and incease productivity. However, current OLED production technology has not been able to satisfy the quality requirement levels by customers, as the market demand for OLED is becoming more and more diversified. In addition, as OLED panel production technology levels to satisfy customers' requirement become higher, product quality problems are persistently generated in OLED deposition process. These problems not only decrease the production yield but also cause a second problem of deteriorating productivity. Based on these observations, in this study, we suggest TRIZ-based improvement of defects caused by glass pixel position deformation, which is one of quality deterioration problems in small and medium OLED deposition process. Specifically, we derive various factors affecting the glass pixel position shift by using cause and effect diagram and identify radical reasons by using XY-matrix. As a result, it is confirmed that glass heat distortion due to the high temperature of the OLED deposition process is the most influential factor in the glass pixel position shift. In order to solve the identified factors, we analyzed the cause and mechanism of glass thermal deformation. We suggest an efficient method to minimize glass thermal deformation by applying the improvement plan of facilities using contradiction matrix in TRIZ. We show that the suggested method can decrease the glass temperature change by about 23% through an experiment.

Localization using Ego Motion based on Fisheye Warping Image (어안 워핑 이미지 기반의 Ego motion을 이용한 위치 인식 알고리즘)

  • Choi, Yun Won;Choi, Kyung Sik;Choi, Jeong Won;Lee, Suk Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.1
    • /
    • pp.70-77
    • /
    • 2014
  • This paper proposes a novel localization algorithm based on ego-motion which used Lucas-Kanade Optical Flow and warping image obtained through fish-eye lenses mounted on the robots. The omnidirectional image sensor is a desirable sensor for real-time view-based recognition of a robot because the all information around the robot can be obtained simultaneously. The preprocessing (distortion correction, image merge, etc.) of the omnidirectional image which obtained by camera using reflect in mirror or by connection of multiple camera images is essential because it is difficult to obtain information from the original image. The core of the proposed algorithm may be summarized as follows: First, we capture instantaneous $360^{\circ}$ panoramic images around a robot through fish-eye lenses which are mounted in the bottom direction. Second, we extract motion vectors using Lucas-Kanade Optical Flow in preprocessed image. Third, we estimate the robot position and angle using ego-motion method which used direction of vector and vanishing point obtained by RANSAC. We confirmed the reliability of localization algorithm using ego-motion based on fisheye warping image through comparison between results (position and angle) of the experiment obtained using the proposed algorithm and results of the experiment measured from Global Vision Localization System.