• Title/Summary/Keyword: Global climate change

Search Result 1,371, Processing Time 0.027 seconds

Examination of the Optimal Insulation Thickness of Exterior Walls for Climate Change (기후변화를 고려한 외벽 최적단열두께 검토)

  • Jung, Jae-Hoon
    • KIEAE Journal
    • /
    • v.11 no.6
    • /
    • pp.81-86
    • /
    • 2011
  • By strengthening the insulation performance of a building, a great deal of energy can be saved and a comfortable indoor environment can be offered to people. On the other hand, the climate, which has a great influence on the indoor environment, is changed by global warming. Therefore, in planning building envelope structure and design, climate change should be considered. In this paper, the optimal insulation thickness of exterior walls was calculated by an economic assessment method using heating degree-days. Additionally, how much influence climate change has on planning building insulation was investigated. The examination showed that heating degree-days have decreased by about 10% due to climate change in the past few decades. It was also shown that the optimal insulation thickness of exterior walls was thin, at about 6%, in three representative Korean cities (Seoul, Daejeon, Jeju).

The Impact of Climate Change on Agriculture and Adaptation in Nepal

  • Pandey, Chandra Lal
    • Agribusiness and Information Management
    • /
    • v.4 no.1
    • /
    • pp.13-23
    • /
    • 2012
  • Understanding climate change is not only complex but also extensive. Humanity has never embarked on such a huge challenge of trans-national scope: a problem that began in the past continues now and will be continuing for a long time in the future. Nepalese have also significantly felt the impact of global climate change. The scenarios of climate change indicate that the increased temperatures will cause snow-melt which will result in floods, droughts, and uneven weather patterns. The impact of such unexpected climate hazards and weather patterns have already been felt and will continue to be felt in Nepal. These climate change-induced hazards and risks particularly threaten the agriculture sector, which results in food insecurity and makes poor and vulnerable people face increasingly unanticipated impacts to their lives and wellbeing. This paper explores the climate vulnerability of the Nepalese in terms of their physical, social, economic and primarily agricultural losses due to the increasing impact of climate change. The paper argues the need for a timely adaptation of measures to maintain an environment suitable for agriculture and for the well-being of the population residing in the area.

  • PDF

Biological indicators to monitor responses against climate change in Korea

  • Lee, Byoung-Yoon;Nam, Gi-Heum;Yun, Jong-Hak;Cho, Ga Youn;Lee, Jin Sung;Kim, Jin-Han;Park, Tae Seo;Kim, Kigyoung;Oh, Kyounghee
    • Korean Journal of Plant Taxonomy
    • /
    • v.40 no.4
    • /
    • pp.202-207
    • /
    • 2010
  • The most useful criteria and selection procedures of biological indicators have been developed in Korea because they have taken into account local and national concerns on biological responses against climate change. On the basis of these criteria and selection procedures, 100 climate-sensitive biological indicator species were selected to predict biodiversity distribution shift by climate change and manage biological resources integratedly at the national level. It is expected that selection and monitoring of biological indicators by climate change will provide significant information to prepare protective strategies of vulnerable species against climate change and adaptive policies under the changing environment in Korea. In this paper, we have reviewed what kinds of criteria were considered in selecting bioindicators to assess responses of biological organisms against climate change. Definition and selection steps of bioindicators were proposed, and the 100 species of climate- sensitive biological indicators were selected out of 33,253 taxa reported in Korea.

Projection of Future Changes in Drought Characteristics in Korea Peninsula Using Effective Drought Index (유효가뭄지수(EDI)를 이용한 한반도 미래 가뭄 특성 전망)

  • Gwak, Yongseok;Cho, Jaepil;Jung, Imgook;Kim, Dowoo;Jang, Sangmin
    • Journal of Climate Change Research
    • /
    • v.9 no.1
    • /
    • pp.31-45
    • /
    • 2018
  • This study implemented the prediction of drought properties (number of drought events, intensity, duration) using the user-oriented systematical procedures of downscaling climate change scenarios based the multiple global climate models (GCMs), AIMS (APCC Integrated Modeling Solution) program. The drought properties were defined and estimated with Effective Drought Index (EDI). The optimal 10 models among 29 GCMs were selected, by the estimation of the spatial and temporal reproducibility about the five climate change indices related with precipitation. In addition, Simple Quantile Mapping (SQM) as the downscaling technique is much better in describing the observed precipitation events than Spatial Disaggregation Quantile Delta Mapping (SDQDM). Even though the procedure was systematically applied, there are still limitations in describing the observed spatial precipitation properties well due to the offset of spatial variability in multi-model ensemble (MME) analysis. As a result, the farther into the future, the duration and the number of drought generation will be decreased, while the intensity of drought will be increased. Regionally, the drought at the central regions of the Korean Peninsula is expected to be mitigated, while that at the southern regions are expected to be severe.

Analysis of climate change mitigations by nuclear energy using nonlinear fuzzy set theory

  • Tae Ho Woo;Kyung Bae Jang;Chang Hyun Baek;Jong Du Choi
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4095-4101
    • /
    • 2022
  • Following the climate-related disasters considered by several efforts, the nuclear capacity needs to double by 2050 compared to 2015. So, it is reasonable to investigate global warming incorporated with the fuzzy set theory for nuclear energy consumption in the aspect of fuzziness and nonlinearity of temperature variations. The complex modeling is proposed for the enhanced assessment of climate change where simulations indicate the degree of influence with the Boolean values between 0.0 and 1.0 in the designed variables. In the case of OIL, there are many 1.0 values between 20th and 60th months in the simulations where there are 10 times more for a 1.0 value in influence. Hence, the temperature variable can give the effective time using this study for 100 months. In the analysis, the 1.0 value in NUCLEAR means the highest influence of the modeling as the temperature increases resulting in global warming. In detail, the first influence happens near the 8th month and then there are four times more influences than effects in the early part of the temperature mitigation. Eventually, in the GLOBAL WARMING, the highest peak is around the 20th month, and then it is stabilized.

Risk Analysis of Thaw Penetration Due to Global Climate Change in Cold Regions

  • Bae, Yoon-Shin
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.2
    • /
    • pp.45-51
    • /
    • 2009
  • A probabilistic approach may be adopted to predict freeze and thaw depths to account for the variability of (1) material properties, and (2) contemporary and future surface energy input parameters(e.g. air temperatures, cloud cover, snow cover) predicted with global climate models. To illustrate the probabilistic approach, an example of the predicted of thaw depths in cold regions is considered. More specifically, the Stefan equation is used together with the Monte Carlo simulation technique to make a probabilistic prediction of thaw penetration. The simulation results indicate that the variability in material properties, surface energy input parameters and temperature data can lead to significant uncertainty in predicting thaw penetration.

Applicability of Climate Change Impact Assessment Models to Korean Forest (산림에 대한 기후변화 영향평가 모형의 국내 적용성 분석)

  • Kim, Su-na;Lee, Woo-Kyun;Son, Yowhan;Cho, Yongsung;Lee, Mi-Sun
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.1
    • /
    • pp.33-48
    • /
    • 2009
  • Forests store carbon dioxide ($CO_2$), one of the major factors of global warming, in vegetation and soils through photosynthesis process. In addition, woods deposit $CO_2$ for a long term until the harvested wood is decomposed or burned, and deforested areas could be expanded the carbon sinks through reforestation. Forests are a lso able to decrease temperature through transpiration and contribute to control the micro climate in global climate systems. Consequently, forests are considered as one of major sinks of greenhouse gases for mitigating global warming. It is very important to develop a Korea specific forest carbon flux model for preparing adaptation measures to climate change. In this study, we compared the climate change impact models in forests developed in foreign countries and analyzed the applicability of the models to Korean forest. Also we selected models applicable to Korean forest and suggested approaches for developing Korean specific model.

Estimation of Crop Yield and Evapotranspiration in Paddy Rice with Climate Change Using APEX-Paddy Model (APEX-Paddy 모델을 이용한 기후변화에 따른 논벼 생산량 및 증발산량 변화 예측)

  • Choi, Soon-Kun;Kim, Min-Kyeong;Jeong, Jaehak;Choi, Dongho;Hur, Seung-Oh
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.4
    • /
    • pp.27-42
    • /
    • 2017
  • The global rise in atmospheric $CO_2$ concentration and its associated climate change have significant effects on agricultural productivity and hydrological cycle. For food security and agricultural water resources planning, it is critical to investigate the impact of climate change on changes in agricultural productivity and water consumption. APEX-Paddy model, which is the modified version of APEX (Agricultural Policy/Environmental eXtender) model for paddy ecosystem, was used to evaluate rice productivity and evapotranspiration based on climate change scenario. Two study areas (Gimjae, Icheon) were selected and the input dataset was obtained from the literature. RCP (Representitive Concentration Pathways) based climate change scenarios were provided by KMA (Korean Meteorological Administration). Rice yield data from 1997 to 2015 were used to validate APEX-Paddy model. The effects of climate change were evaluated at a 30-year interval, such as the 1990s (historical, 1976~2005), the 2025s (2011~2040), the 2055s (2041~2070), and the 2085s (2071~2100). Climate change scenarios showed that the overall evapotranspiration in the 2085s reduced from 10.5 % to 16.3 %. The evaporations were reduced from 15.6 % to 21.7 % due to shortend growth period, the transpirations were reduced from 0.0% to 24.2 % due to increased $CO_2$ concentration and shortend growth period. In case of rice yield, in the 2085s were reduced from 6.0% to 25.0 % compared with the ones in the 1990s. The findings of this study would play a significant role as the basics for evaluating the vulnerability of paddy rice productivity and water management plan against climate change.

Future Changes of Wildfire Danger Variability and Their Relationship with Land and Atmospheric Interactions over East Asia Using Haines Index (Haines Index를 이용한 동아시아 지역 산불 확산 위험도 변화와 지표-대기 상호관계와의 연관성 연구)

  • Lee, Mina;Hong, Seungbum;Park, Seon Ki
    • Atmosphere
    • /
    • v.23 no.2
    • /
    • pp.131-141
    • /
    • 2013
  • Many studies have related the recent variations of wildfire regime such as the increasing number of occurrances, their patterns and timing changes, and the severity of their extreme cases with global warming. However, there are only a few numbers of wildfire studies to assess how the future wildfire regime will change in the interactions between land and atmosphere with climate change especially over East Asia. This study was performed to estimate the future changing aspect of wildfire danger with global warming, using Haines Index (HI). Calculated from atmospheric instability and dryness, HI is the potential of an existing fire to become a dangerous wildfire. Using the Weather Research and Forecasting (WRF) model, two separated 5-year simulations of current (1995~1999) and far future (2095~2099) were performed and analyzed. Community Climate System Model 3 (CCSM3) model outputs were utilized for the model inputs for the past and future over East Asia; future prediction was driven under the IPCC A1B scenario. The results indicate changes of the wildfire danger regime, showing overall decreasing the wildfire danger in the future but intensified regional deviations between north and south. The overall changes of the wildfire regime seems to stem from atmospheric dryness which is sensitive to soil moisture variation. In some locations, the future wildfire danger overall decreases in summer but increases in winter or fall when the actual fire occurrence are generally peaked especially in South China.

Distribution of High Mountain Plants and Species Vulnerability Against Climate Change (한반도 주요 산정의 식물종 분포와 기후변화 취약종)

  • Kong, Woo-Seok;Kim, Kunok;Lee, Slegee;Park, Heena;Cho, Soo-Hyun
    • Journal of Environmental Impact Assessment
    • /
    • v.23 no.2
    • /
    • pp.119-136
    • /
    • 2014
  • This work aims to select the potentially vulnerable plant species against climate change at alpine and subalpine belts of Mts. Sorak, Jiri, and Halla, from central, southern, southern insular high mountains of the Korean Peninsula, respectively. The selection of global warming related vulnerable plants were performed by adapting various criteria, such as flora, endemicity, rarity, floristically specific and valuable species, species composition at mountain summits, horizontal and vertical ranges of individual species, and their distributional pattern in the Korean Peninsula. Line and quadrat field surveys along the major trails from all directions at height above 1,500 meters above sea level of Mts, Sorak, Jiri and Halla were conducted each year during spring, summer, and autumn from 2010 to 2011. Based upon above mentioned eight criteria, high level of climate change related potentially vulnerable arboral plants, such as Rhododendron aureum, Taxus caespitosa, Pinus pumila, Oplopanax elatus, Vaccinium uliginosum, and Thuja koraiensis are noticed from at subalpine belt of Mt. Sorak. Species of Abies koreana, Rhododendron tschonoskii, Oplopanax elatus, Taxus cuspidata, Picea jezoensis, and Juniperus chinensis var. sargentii belong to climate change concerned vulnerable species at subalpine belt of Mt. Jiri. High level of climate change related species vulnerability is found at alpine and subalpine belts of Mt. Halla from Diapensia lapponica var. obovata, Salix blinii, Empetrum nigrum var. japonicum, Vaccinium uliginosum, Juniperus chinensis var. sargentii, Taxus cuspidata, Rhamnus taquetii, Abies koreana, Hugeria japonica, Prunus buergeriana, and Berberis amurensis var. quelpartensis. Countermeasures to save the global warming vulnerable plants in situ are required.