• 제목/요약/키워드: Global Warming Potential (GWP)

검색결과 84건 처리시간 0.026초

반도체 탄소 중립을 위한 친환경 가스 기반 식각 공정 연구 (Advanced Dry Etch Process with Low Global Warming Potential Gases Toward Carbon Neutrality)

  • 주정아;박진구;서준기;정홍식
    • 한국전기전자재료학회논문지
    • /
    • 제36권2호
    • /
    • pp.99-108
    • /
    • 2023
  • Currently, semiconductor manufacturing industry heavily relies on a wide range of high global warming potential (GWP) gases, particularly during etching and cleaning processes, and their use and relevant carbon emissions are subject to global rules and regulations for achieving carbon neutrality by 2050. To replace high GWP gases in near future, dry etching using alternative low GWP gases is thus being under intense investigations. In this review, we report a current status and recent progress of the relevant research activities on dry etching processes using a low GWP gas. First, we review the concept of GWP itself and then introduce the difference between high and low GWP gases. Although most of the studies have concentrated on potentially replaceable additive gases such as C4F8, an ultimate solution with a lower GWP for main etching gases including CF4 should be developed; therefore, we provide our own perspective in this regard. Finally, we summarize the advanced dry etch process research with low GWP gases and list up several issues to be considered in future research.

Low GWP 냉매의 국내외 연구개발 동향

  • 김민수;조금남
    • 기계저널
    • /
    • 제57권9호
    • /
    • pp.30-34
    • /
    • 2017
  • 이 글에서는 Low GWP(Global Warming Potential, 지구온난화지수) 냉매의 국내외 연구개발 동향에 대해 소개하고자 한다.

  • PDF

Decrease of Global Warming Effect During Dry Etching of Silicon Nitride Layer Using C3F6O/O2 Chemistries

  • Kim, Il-Jin;Moon, Hock-Key;Lee, Jung-Hun;Jung, Jae-Wook;Cho, Sang-Hyun;Lee, Nae-Eung
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.459-459
    • /
    • 2012
  • Recently, the discharge of global warming gases in dry etching process of TFT-LCD display industry is a serious issue because perfluorocarbon compound (PFC) gas causes global warming effects. PFCs including CF4, C2F6, C3F8, CHF3, NF3 and SF6 are widely used as etching and cleaning gases. In particular, the SF6 gas is chemically stable compounds. However, these gases have large global warming potential (GWP100 = 24,900) and lifetime (3,200). In this work, we chose C3F6O gas which has a very low GWP (GWP100 = <100) and lifetime (< 1) as a replacement gas. This study investigated the effects of the gas flow ratio of C3F6O/O2 and process pressure in dual-frequency capacitively coupled plasma (CCP) etcher on global warming effects. Also, we compared global warming effects of C3F6O gas with those of SF6 gas during dry etching of a patterned positive type photo-resist/silicon nitride/glass substrate. The etch rate measurements and emission of by-products were analyzed by scanning electron Microscopy (SEM; HITACI, S-3500H) and Fourier transform infrared spectroscopy (FT-IR; MIDAC, I2000), respectively. Calculation of MMTCE (million metric ton carbon equivalents) based on the emitted by-products were performed during etching by controlling various process parameters. The evaluation procedure and results will be discussed in detail.

  • PDF

Low - Global Warming Potential 냉매를 이용한 에틸렌 수송선의 재액화 시스템 성능개선 (Performance Improvement on the Re-Liquefaction System of Ethylene Carrier using Low-Global Warming Potential Refrigerants)

  • 하성용;최정호
    • 대한조선학회논문집
    • /
    • 제55권5호
    • /
    • pp.415-420
    • /
    • 2018
  • The development of sail gas has increased the production of ethane as well as natural gas. The decline in the market price for ethane has led to a change in the petroleum-based ethylene production process into an ethane-based ethylene production process and an increase in the ethane/ethylene trade volume. Large-scale ethane/ethylene carrier have been needed due to an increase in long-distance trade from the US, and cargo type change have leaded to consider a liquefaction process to re-liquefy Boil-Off gas generated during the voyage. In this paper, the liquefaction system of Liquefied Ethane Gas carrier was evaluated with Low-GWP (Low-Global Warming Potential) refrigerant and process parameters, Boil-Off Gas pressure and expansion valve outlet pressure, were optimized. Low-GWP refrigerants were propane (R290), propylene(R1270), carbon dioxide(R744) was considered at two type of liquefaction process such as Linde and cascade cycle. The results show that the optimal pressure point depends on the individual refrigerant and the highest liquefaction efficiency of carbon dioxide (R744) - propane (R290) refrigerant.

Low GWP 냉매를 적용한 해수열 히트펌프의 성능해석 (The Performance Analysis of Sea Water Heat Pump applied Low GWP Refrigerants)

  • 임승택;김현주;이호생
    • 동력기계공학회지
    • /
    • 제20권5호
    • /
    • pp.92-97
    • /
    • 2016
  • In this study, the seawater Heat Pump System using seawater with temperature of annual domestic conditions ($0^{\circ}C$ to $25^{\circ}C$) is designed in order to compare its performance against the Heat Pump using unused heat of seawater. As a potential replacement for current refrigerants that exacerbate global warming and ozone delpetion, a Low GWP refrigerant's performance is analyzed. The basic water to water Heat Pump system is chosen and three commercial refrigerants - R134a, R410a, R32 - are used to compare against new Low GWP refrigerant R1234ze. When seawater with temperature of $25^{\circ}C$ is used, the performance change showed maximal increase in COP, 38.3%. low GWP refrigerant R1234ze, showed great performance characteristics reach to 5.242 and Existing commercial refrigerant, R134a showed only less than 0.03 performance difference against R1234ze. The study confirms notable performance of R1234ze refrigerant through simulation as environmentally friendly refrigerant for domestic seawater Heat Pump.

R-134a와 R-152a 냉매를 이용한 자동차용 에어컨 시스템의 성능에 관한 실험적 연구 (An Experimental Study on Performance of Automotive Air conditioning System by using R-134a and R-152a)

  • 김종수;이대웅;유성연
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.1225-1231
    • /
    • 2006
  • Recently, as the climate of temperature change has happened worldwide, To solve this problem, Kyoto protocol was taken to regulate global warming on Feb. 2005 and each country is making efforts to prevent global warming. In the automotive industry, R-134a refrigerant is widely used most these days because it has zero ODP(Ozone Depletion Potential). But R-134a GWP(Global Warming Potential) is so high. Therefore, replacement refrigerant desperately is needed as a alternative refrigerant. So, R-l52a is considered as one of the alternative refrigerants due to zero ODP and lower GWP against as required on Europe Committee. In this paper, performance of the air conditioning system between R-134a and R-152a is investigated experimentally. In the bench level, cooling capacity, condensing capacity, COP of automotive air conditioning system are ovaluated by means of air velocity entering the condenser and compressor revolution speed with optimized charge refrigerant quantity. Result of this study, R-152a refrigerant shows the possibility as alternative refrigerant of current R-134a in automotive air conditioning system.

  • PDF

에어컨용 냉매 HFC-152a와 HFC-152a에 $CF_3$I를 혼합한 공비혼합냉매 특성에 관한 연구 (A Study on the Refrigerant Characteristics of the HFC-l52a, and Azeotrope Mixed with $CF_3$I in Air Conditioners)

  • 이종인;하옥남;홍경한;권일욱;박찬수
    • 설비공학논문집
    • /
    • 제14권4호
    • /
    • pp.332-340
    • /
    • 2002
  • In these days, environmental concerns have been increased throughout the industry and community worldwide. To prevent the ozone depletion, ozone depletion potential of a refrigerant must be zero. Simultaneously, a refrigerant with low GWP (global warming potential) is very demanding to induce green house effect. Chlorine-free HFC-l34a is a refrigerant widely used for automotive air-conditioning system because its destruction potential is ecologically zero. Although HFC-l34a has no ozone depletion potential, its global warming potential is so high that it is not considered as a perfect alternative refrigerant that is acceptable for long-term use. In this paper, experimental measurement has been carried out to analyze the performance characteristics of automotive air-conditioning system using HFC-152a, which has low GWP and zero ODP. Also mixed refrigerant that is composed of HFC-152a and $CF_3$ was applied to investigate an alternative possibility for the automotive airconditioning system. As a result of this study, we could draw following conclusions; With respect to the variation of the rotational speed of compressor, outside air temperature and flow rate, the heat amount of evaporator and compressor and performance coefficient was varied.

A Study on the Characteristics an Azeotropic Mixture Combined with CF_{3}I and a Refrigerant for Air-Conditioner HFC-152a and HFC-152a

  • Lee, Jong-In;Kwon, Il-Wook;Ha, Ok-Nam
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제11권3호
    • /
    • pp.140-149
    • /
    • 2003
  • In these days, environmental concerns have been increased throughout the industry and community worldwide. To prevent the ozone depletion, ozone depletion potential of a refrigerant must be zero. Simultaneously, a refrigerant with low GWP (global warming potential) is very demanding to reduce green house effect. Chlorine-free HFC-l34a is a refrigerant widely used for automotive air-conditioning system because its destruction potential is ecologically zero. Although HFC-l34a has no ozone depletion potential, its global warming potential is so high that it is not considered as a perfect alternative refrigerant that is acceptable for long-term use. In this paper, experimental measurement has been carried out to analyze the performance characteristics of automotive air-conditioning system using HFC-152a, which has low GWP and zero ODP. Also mixed refrigerant that is composed of HFC-152a and $CF_3$ was applied to investigate an alternative possibility for the automotive air-conditioning system. As a result of this study, we could draw following conclusions; With respect to the variation of the rotational speed of compressor, outside air temperature and flow rate, the heat amount of evaporator and compressor and performance coefficient was varied.

논에서 SRI 물관리 방법에 의한 온실가스와 관개용수 저감효과 분석 (Effect of SRI Water Management on the Reduction of Greenhouse-gas Emissions and Irrigation Water Supply in Paddy)

  • 서지연;박배경;박운지;이수인;최용훈;신민환;최중대
    • 한국농공학회논문집
    • /
    • 제60권1호
    • /
    • pp.79-87
    • /
    • 2018
  • Water management impacts both methane ($CH_4$) and nitrous oxide ($N_2O$) emissions from rice paddy fields. Although irrigation is one of the most important methods for reducing $CH_4$ emission in rice production systems it can also $N_2O$ emissions and reduce crop yields. A feasibility study on the system of rice intensification (SRI) methods with respect to irrigation requirements, greenhouse gas (GHG) emissions was conducted for either 2 or 3 years depending on the treatment in Korea. The SRI methods (i.e. SRI and midsummer drainage (MD) with conventional practice (CT)) reduced the irrigation requirement by 49.0 and 22.0 %, respectively. Global warming contribution of GHG to different depending on the type of GHG. Therefore, the emission of $CH_4$ and $N_2O$ shall be converted to Global Warming Potential (GWP). The GHG emission from the conventional practice with midsummer drainage (MD) and the SRI plots, in GWP were reduced by 49.1 and 77.1 %, respectively. Application of SRI water management method could help to improve Korea's water resources and could thus contribute to mitigation of the negative effects of global warming.

Effect of Intermittent Drainage on Nitrous Oxide Emission and Global Warming Potential in Rice Paddy Soil

  • Kim, Gun-Yeob;Lee, Seul-Bi;Lee, Jong-Sik;Choi, Eun-Jung
    • 한국토양비료학회지
    • /
    • 제45권6호
    • /
    • pp.1187-1193
    • /
    • 2012
  • Water control is mainly one of the key factors that can affect nitrous oxide ($N_2O$) emissions from soils. This study was undertaken to determine the effect of intermittent drainage compared to continuous flooding (conventional water regime) on $N_2O$ emission to global warming potential (GWP) with NPK (standard cultivation practice), NPK+Straw, and PK fertilizations. Nitrous oxide emission rates were collected twice a week using a closed chamber method. With continuous flooding, nitrogen (N) application increased $N_2O$ emission by 106.6% ($0.64kg\;ha^{-1}$ in NPK) with respect to the PK treatment ($0.31kg\;ha^{-1}$), and straw addition to NPK enhanced 148.3% of seasonal $N_2O$ flux ($0.77kg\;ha^{-1}$ in NPK+Straw). Although seasonal $N_2O$ emission slightly increased by 16.1-42.9% with intermittent irrigation, its seasonal $CH_4$ emission drastically reduced at 43.5-52.8% resulting in a lower GWP at 48.9-58.5% with respect to that of continuously flooded treatments ($4.51Mg\;CO_2\;ha^{-1}$, PK; $7.60Mg\;CO_2\;ha^{-1}$, NPK; $14.55Mg\;CO_2\;ha^{-1}$, NPK+Straw). Rice yield, at similar fertilization with the continuously-flooded rice field, was not affected by intermittent irrigation. Conclusively, intermittent irrigation can be very effective and a rational soil management strategy to mitigate GWP with considering rice productivity in a temperate paddy rice field like Korea.