• Title/Summary/Keyword: Global Vibration Analysis

Search Result 141, Processing Time 0.027 seconds

Free vibration response of functionally graded Porous plates using a higher-order Shear and normal deformation theory

  • Bennai, Riadh;Atmane, Hassen Ait;Ayache, Belqassim;Tounsi, Abdelouahed;Bedia, E.A. Adda;Al-Osta, Mohammed A.
    • Earthquakes and Structures
    • /
    • v.16 no.5
    • /
    • pp.547-561
    • /
    • 2019
  • In this work, a new analytical approach using a theory of a high order hyperbolic shear deformation theory (HSDT) has been developed to study the free vibration of plates of functionally graduated material (FGM). This theory takes into account the effect of stretching the thickness. In contrast to other conventional shear deformation theories, the present work includes a new displacement field that introduces indeterminate integral variables. During the manufacturing process of these plates defects can appear as porosity. The latter can question and modify the global behavior of such plates. The materials constituting the plate are assumed to be gradually variable in the direction of height according to a simple power law distribution in terms of the volume fractions of the constituents. The motion equations are derived by the Hamilton principle. Analytical solutions for free vibration analysis are obtained for simply supported plates. The effects of stretching, the porosity parameter, the power law index and the length / thickness ratio on the fundamental frequencies of the FGM plates are studied in detail.

Analysis of the Cause of Hindrance for Ride Quality with OPAX and OTPA (변수모델을 이용한 전달경로분석법(OPAX)과 전달률 함수를 사용한 전달경로분석법(OTPA)을 사용한 승차감 저해요인분석)

  • Kim, Jongsik;Sin, Kwangsoo;Choi, Sangil;Im, Sebin;Kim, Jindong;Lee, Sangkwon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.12
    • /
    • pp.935-942
    • /
    • 2014
  • The ride quality investigation is on-going topic in the car industry since its global standard has not evaluated and it is difficult to point out one part that hinders the ride quality. Since the traditional transfer path analysis that is widely used in car industry to investigate the ride quality requires a lot of test time to process the full data so that there are problems to conduct in industry. Based on these disadvantages, new approaches have developed such as OPAX(operational path analysis with eXogeneous inputs) and OTPA(operational transfer path analysis) for last decades. The OTPA only requires the operational data for evaluate the contribution of vibration sources and the OPAX has advantage of using parametric model to estimate the operating load and needs a minimum set of extra tests with excitation. In this paper, for evaluating the hindrance of ride quality two methods are used and the result is compared with another result of a car having higher ride quality.

Acquisition of Grass Harvesting Characteristics Information and Improvement of the Accuracy of Topographical Surveys for the GIS by Sensor Fusion (I) - Analysis of Grass Harvesting Characteristics by Sensor Fusion -

  • Choi, Jong-Min;Kim, Woong;Kang, Tae-Hwan
    • Journal of Biosystems Engineering
    • /
    • v.40 no.1
    • /
    • pp.28-34
    • /
    • 2015
  • Purpose: This study aimed to install an RTK-GPS (Real Time Kinematic-Global Positioning System) and IMU (Inertial Measurement Unit) on a tractor used in a farm to measure positions, pasture topography, posture angles, and vibration accelerations, translate the information into maps using the GIS, analyze the characteristics of grass harvesting work, and establish new technologies and construction standards for pasture infrastructure improvement based on the analyzed data. Method: Tractor's roll, pitch, and yaw angles and vibration accelerations along the three axes during grass harvesting were measured and a GIS map prepared from the data. A VRS/RTK-GPS (MS750, Trimble, USA) tractor position measuring system and an IMU (JCS-7401A, JAE, JAPAN) tractor vibration acceleration measuring systems were mounted on top of a tractor and below the operator's seat to obtain acceleration in the direction of progression, transverse acceleration, and vertical acceleration at 10Hz. In addition, information on regions with bad workability was obtained from an operator performing grass harvesting and compared with information on changes in tractor posture angles and vibration acceleration. Results: Roll and pitch angles based on the y-axis, the direction of forward movements of tractor coordinate systems, changed by at least $9-13^{\circ}$ and $8-11^{\circ}$ respectively, leading to changes in working postures in the central and northern parts of the pasture that were designated as regions with bad workability during grass harvesting. These changes were larger than those in other regions. The synthesized vectors of the vibration accelerations along the y-axis, the x-axis (transverse direction), and the z-axis (vertical direction) were higher in the central and northwestern parts of the pasture at 3.0-4.5 m/s2 compared with other regions. Conclusions: The GIS map developed using information on posture angles and vibration accelerations by position in the pasture is considered sufficiently utilizable as data for selection of construction locations for pasture infrastructure improvement.

Design of high stiffness and lightweight body for stiffness distribution ratio (강성 배분비를 괴려한 고강성 경량화 차체 설계)

  • Yang, Hee-Jong;Kim, Ki-Chang;Yim, Hong-Jae;Kim, Chan-Mook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.562-566
    • /
    • 2006
  • Lightweight body can cause a low stiffness due to the decrease of panel thickness and reinforcing member. The other way, high stiffness body demands an increase of mass. Front pillar section area is decreased due to driver's visual field. Global vehicle stiffness is affected by stiffness distribution ratio between upper part and lower part at side body structure. This paper will describe a process used to evaluate the stiffness distribution ratio based on research of strain energy analysis of the tip rotation method. In addition, optimum design schemes are presented for high stiffness and lightweight body structure considering the investigated stiffness distribution ratio. In this way the designer will be aided by a defined design guide and a set of supporting tool to help him work towards a good design

  • PDF

GLOBAL BIFURCATION ANALYSIS OF NON-LINEAR OSCILLATION OF A RECTANGULAR PLATE (직사각형 평판의 비선형 진동의 광역분기해석)

  • SEO IL CHANG;JAE-WON LEE;JIN-KWEN CHOI
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.65-72
    • /
    • 2001
  • 직사각형 평판이 수직방향으로 조화가진력을 받을 때 그 변위가 큰 경우 두 개의 모드 간의 비선형적 상호작용에 대한 연구이다. 폰 칼만 운동방정식에서 유도된 두 개의 상미분 방정식으로부터 수차에 걸친 좌표변환을 거쳐 자유진동의 경우 정지해와 주기해를 구한다. 말굽형태의 분기 현상이 일어날 수 있는 조건을 호모클리닉 또는 헤테로클리닉 궤적의 유무로부터 결정한다. 혼돈 현상의 발생조건을 구하기 위해 멜니코프 방법이 적용되어질 수 있는 형태로 변환하여 광역섭동법의 수학적 결과를 직접적으로 적용할 수 있는 형태로 변환한다.

  • PDF

Forced Vibration Analysis of a Hollow Crankshaft by using Transfer Matrix Method and Finite Element Method (전달 행렬법과 유한요소법을 이용한 중공 크랭크축의 강제 진동 해석)

  • 김관주;최진욱
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.6
    • /
    • pp.44-52
    • /
    • 1997
  • As part of the effort to reduce the weight of powertrain, a hollow crankshaft has been designed. The mass reduction of the crankshaft changes the dynamic properties of the crankshaft such as moment of inertia, and torsional, bending stiffness. The purpose of this paper is to compare the dynamic behavior of the hollow crankshaft with that of the original, solid crankshaft. Global dynamic behavior of the crankshaft is analyzed bgy the transfer matrix method(TMM). The crankshaft has been modeled by 38 lumped mass and stiffness elements. The dynamic patameters of each lumped element are provided by Finite Element Method(FEM). The responses of the crankshaft from TMM are fed back as loading conditions to the Finite Element model to obtain dynamic stresses for critical areas of the crankshaft.

  • PDF

Free Vibration of Compressed Laminated Composite Beam-Columns with Multiple Delaminations (압축하중을 받는 다층간분리 적층 복합 보-기둥의 자유진동)

  • 이성희;박대효;백재욱;한병기
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.501-508
    • /
    • 2001
  • Free vibration analysis of multi-delaminated composite beam-columns subjected to axial compression load is performed in the present study. In order to investigate the effects of multi-delaminations on the natural frequency and elastic buckling load of multi-delaminated beam-columns, the general kinematic continuity conditions are derived from the assumption of constant slope and curvature at the multi-delamination tip. Characteristic equation of multi-delaminated beam-column is obtained by dividing the global multi-delaminated beam-columns into segments and by imposing recurrence relation from the continuity conditions on each sub-beam-column. The natural frequency and elastic buckling load of multi-delaminated beam-columns according to the incremental load of axial compression, which is limited to the maximum elastic buckling load of sound laminated beam-column, are obtained. It is found that the sizes, locations and numbers of multi-delaminations have significant effect on natural frequency and elastic buckling load, especially the latter ones.

  • PDF

Sensor placement strategy for high quality sensing in machine health monitoring

  • Gao, Robert X.;Wang, Changting;Sheng, Shuangwen
    • Smart Structures and Systems
    • /
    • v.1 no.2
    • /
    • pp.121-140
    • /
    • 2005
  • This paper presents a systematic investigation of the effect of sensor location on the data quality and subsequently, on the effectiveness of machine health monitoring. Based on an analysis of the signal propagation process from the defect location to the sensor, numerical simulations using finite element modeling were conducted on a bearing test bed to determine the signal strength at several representative sensor locations. The results showed that placing sensors closely to the machine component being monitored is critical to achieving high signal-to-noise ratio, thus improving the data quality. Using millimeter-sized piezoceramic plates, the obtained results were evaluated experimentally. A comparison with a set of commercial vibration sensors verified the developed structural dynamics-based sensor placement strategy. It further demonstrated that the proposed shock wave-based sensing technique provided an effective alternative to vibration measurement, while requiring less space for sensor installation.

Dynamic analysis and shear connector damage identification of steel-concrete composite beams

  • Hou, Zhongming;Xia, He;Zhang, YanLing
    • Steel and Composite Structures
    • /
    • v.13 no.4
    • /
    • pp.327-341
    • /
    • 2012
  • With the advantages of large span, light deadweight and convenient construction, the steel-concrete composite beam (SCCB) has been rapidly developed as a medium span bridge. Compared with common beams, the global stiffness of SCCB is discontinuous and in a staged distribution. In this paper, the analysis model for the simply-supported SCCB is established and the vibration equations are derived. The natural vibration characteristics of a simply-supported SCCB are analyzed, and are compared with the theoretical and experimental results. A curvature mode measurement method is proposed to identify the shear connector damage of SCCB, with the stiffness reduction factor to describe the variation of shear connection stiffness. By analysis on the $1^{st}$ to $3^{rd}$ vertical modes, the distribution of shear connectors between the steel girder and the concrete slab are well identified, and the damage locations and failure degrees are detected. The results show that the curvature modes can be used for identification of the damage location.

Free vibration analysis of damaged beams via refined models

  • Petrolo, Marco;Carrera, Erasmo;Alawami, Ali Saeghier Ali Saeed
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.1
    • /
    • pp.95-112
    • /
    • 2016
  • This paper presents the free vibration analysis of damaged beams by means of 1D (beam) advanced finite element models. The present 1D formulation stems from the Carrera Unified Formulation (CUF), and it leads to a Component-Wise (CW) modelling. By means of the CUF, any order 2D and 1D structural models can be developed in a unified and hierarchical manner, and they provide extremely accurate results with very low computational costs. The computational cost reduction in terms of total amount of DOFs ranges from 10 to 100 times less than shell and solid models, respectively. The CW provides a detailed physical description of the real structure since each component can be modelled with its material characteristics, that is, no homogenization techniques are required. Furthermore, although 1D models are exploited, the problem unknown variables can be placed on the physical surfaces of the real 3D model. No artificial surfaces or lines have to be defined to build the structural model. Global and local damages are introduced by decreasing the stiffness properties of the material in the damaged regions. The results show that the proposed 1D models can deal with damaged structures as accurately as a shell or a solid model, but with far lower computational costs. Furthermore, it is shown how the presence of damages can lead to shell-like modal shapes and torsional/bending coupling.