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INTRODUCTION

In this paper, global dynamics in an externally excited thin rectangular plate is studied. For
appropriate aspect ratio, two or more modes of a rectangular plate have identical natural frequen-
cies. Through Galerkin’s procedure, the von Karman plate equations can be reduced to two coupled
non-linear ordinary differential equations of the two modes [1]. The method of averaging is used to
transform the modal equations to four first-order differential equations representing the slow-time
evolution of amplitudes and phases of harmonic motions of the two modes. The system of equations
is transformed by a sequence of canonical transformations to the system of appropriate form, to
which Melnikov method can be applied to study global dynamics of the system by adopting the
result of Kovacic and Wiggins [2].

By following the ideas in Holmes [3] and Feng and Sethna [4], open sets in parameter space are
identified to find phase portraits of, the so called, “unperturbed system”. The geometric structures
of the unperturbed system are studied to find orbits homoclinic and heteroclinic to fixed points.
It is known that under certain condition, these orbits break and cause the onset of chaotic motion
for the so called, “perturbed system”.
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FORMULATION OF THE PROBLEM

Reduction procedures {1] by Galerkin’s method is omitted here and the two coupled non-linear
differential equations of the two modes in one-to-one internal resonance can be obtained as follows:

X1 +X1=¢€ [(A1Xf +A2X%)X1 —ch + @QicosT +01X1] ,
Xz +Xy=¢ [(A2X12 +A3X§)X2 - CX2 + Q2 COST+0‘2X2] , (1)

where X, X, @1, @2, ¢, 01, andos represent amplitudes of the two modes, amplitudes of
external forces which excite the first and second modes directly, damping constant and frequency
detuning parameters, respectively. A1, A2, andAs are the coeflicients which can be determined by
the selection of the two modes. e is a small parameter.

The discretized equations (1) of motion for the two-mode approximation can be rewritten in
state space form as:
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- e[ft + 2madded + M) + @+ Qo) cos T+ Yo o) )
Transforming equations (2) by using the canonical transformation in action and angle variables:
G = @L¥sin (6 +7) , p o= @L)Tcos (6 +7),i=12 (4)

and time-averaging the resulting equations, gives
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= -—l AL I sin 2(91 - 92) + & I cos &y — clp,
2 V2
oH
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) V2 _ sin @
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0H

I = - 0 clp
- %Azhlz sin 20, — 62) + \/Li Qa/Tscos 0y — cly
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= ——[A211 cos 2(6, — 62) + 2451 + 3A4s]; + 204] -£Q2S%2 (5)
where
H = Hy + H,
Hy(1,0) = % (BA1 2 + 44, L I, + 343 1§
+4(or I} + 02 L) + 24251 1c08 2(6; — 62)] ,
@(1,6) = - % [@ VT sin 6y + Q:VE sin 6], (6)
M

where the / notation stands for a derivative with respect to slow time e¢7. Finally, transforming
from the action-angle variables (I;,6;) to new variables (P;, ©;) with a generating function F =
(61 — 62)P1 + 62P, via the coordinate changes:

L = P, 6= 0, + O, b = b — P and 6, = 03, 8
yields,
0K
y o Y2
Pl 66 CP]
= %A2P1(P1 - P2) sin 20; + QT P; cos (@1 + @2) - ch,
, 0K
0, = + 3P,
1
= 1 [A2(2P; — Po)(2 + cos 201) + 3A43(P, — Pi) — 3A1 Py + 2(09 — 01)]
3 .
+£ [_lem (©1+069) +QpSn & sin 9, ] ’
4 VP VP =P
, _ 0K
P2 = 6Q2 CP2
1
= ﬁ [Qn/Pl cos (01 + ©2) + @24/ Po— P, cos 82] - ch,
;o 0K
0, = + o5,
1 : V2 sin ©
= Z[— AP (2 + cos 201) + 343(PL — B) — 209] — sz s (9)
where

K = KO + Kla



1
Ky(P,©) = - 5 [(3A4) — 445 +34;3) P? + 2(242 —343) P, P, + 343 P}
+4 (01 — 02) PL + 402 Py + 243P ¢c0s20; (P2 — P1)] ,

Ki(P,0) - %[Q1 VE sin (01+6y) + Qv P sin 6. (10)

Bifurcations of Unperturbed System and Heteroclinic Orbits

We consider now the unperturbed system, that is, a system of free vibration without any exter-
nal excitation force or any damping. From equations (9), we get the equations of the unperturbed
system as follows:

3K 1 .
Pll = - TQ(I) = 5 AZPI(Pl - P2) sm 2@1 y
0K
/ —_ —
0, = + P,
1
= Z [A2(2P1 - Pz)(z +- cos 2@1) + 3A3(P2 - P1) -3A,P + 2(0’2 - 01)] ,
0K
/ = —_——_—— =
P, = 30, 0,
9K, 1
0; = a_POZZ[— A2P1(2 + cos 261) + 3A43(Py — Pp) — 209] . (11)
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Since in equation (11) P; = 0, P, remains constant and we need only study the (P, ©1)-system.
After integration of this system for fixed Py, ©2(t) can be solved for directly. We note again that
equations (11) form a completely integrable Hamiltonian system with P, = Py, a constant. We
first study this reduced one degree-of-freedom system:

OK) 1 .
P{ = - —6—-@—2- = 5 A2P1(P1 - on) sin 2@1 y
0K}
r_ 0
e, = + —aPl
1
= Z [A2(2P1 - on)(2 + cos 2@1) + 3A3(P20 - Pl) —-3A,P + 2(0’2 - 01)] ,
(12)
where
Kg = (Ko )Pz:Pgo
= - % [( 341 — 442 + 34;) P2 + 2(242 ~ 343) P, Py + 343 P4
+ 4 (0’1 — 0’2) P, + 409 Pyy + 2A3P; 0520, (on - Pl)] (13)
We note by inverting the transformations that
1
P= < [( +a@)+ (0 +03)] = Hlbpa (14)

2

where Hy(p, q), first defined in equation (3), is the total energy for a linear conservative system.
SincePL, =1, > 0and P, — PL = I > 0,P, > 0and P, > P;. Furthermore, since O is



periodic, we need to consider only 0 < P; € Pypand 0 £ ©; <. The present study, however,
includes more general pictures of phase flows and equilibrium points.

Consider now the equilibrium points of equations (12), that are defined by the solutions of P|
= 0 and ©] = 0. To study the nature of these equilibrium points, the determinant of the Jacobian
of equations (12) is evaluated at the equilibrium points. The Jacobian of (12) is

Jae = [ %Az (2P; — Py)5in 20, A21 P, (P — Py) cos 20, ] (15)
3{242(24c0s20,) — 343 ~34;} —35As (2P, — Py)sin20,
and its determinant is
det Jac = - %Agz (2P, — Pyy)?sin? 20,
—%AzPl (PL = Py) cos 201 [242(2 + cos 201) — 343 —341]  (16)
Note that tr Jac = 0, since the system is Hamiltonian and that sign of the det Jac determines

the stability of the equilibrium points. They are saddles when det Jac < 0, and centers when
det Jac > 0. The four equilibrium points of equations (12) can be easily shown to be:

(z) B = 0 cos2@1=—2+3—j—z+m(az—al),

(%) Pl=P2°;COS291=-2+3%§_Z;2132;(02—01)’

(i) €1 =0m B = —6A32( 133:1:1 1)3/11 iy vn 32A3 T34, 2=
() O1=75; A= ~2Af 133:1;4 42r)3A1 Pot =77 32A3 T34, 0270

(17)

From equations (17), we can see that the equilibrium points (i) and (ii) only exist if cos 20, has

values between +1. The determinant can be shown to be always negative in these cases and so the

equilibrium points (i) and (ii) are always saddles. The equilibrium points (iii) and (iv) can be both

saddles and centers depending on the sign of det Jac. Using these results it is possible to identify

open sets in the oo/ Py — 01/ Py plane where only certain types of equilibrium points are possible.

The bifurcation sets separating the appropriate regions in parameter plane are shown in Figure 1.
The equilibrium points (i) are saddles if:

A2 - 3A3 > gy — 01 > 3(A2 - Aa)
2 - Py - 2 ’

(18)

This defines, respectively, the lines labelled 4 and 3 in Figure 1. Similarly, the equilibrium points
(ii) are saddles if:

_A2 - 3A1 < g — 0] < — 3(A2 — Al)

2 - Py - 2 (19)

This defines, respectively, lines 1 and 3 in Figure 1. The equilibrium points (iii} are saddles if:

3(A4; — A3) g2 — 01 3(A; — Ag)
2 > Py > 2 ’

(20)
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£ 1: Types of equilibrium points in the bifurcation sets

(1) (ii) (ii1) (iv)
I X X center | saddle
II X saddle | center | center
I X x saddle | center
IV | saddle X center | center
v X X center | saddle

and centers if this inequality is not satisfied. This also defines, respectively, lines 3 and 2 in Figure 1.
The equilibrium points (iv) are saddles if:

g — 01 Ay — 343 o2 — 01 —As + 34

> , or < .

Py 2 Py 2

Otherwise these equilibrium points will be centers. These inequalities also define lines 4 and 1,

respectively, in Figure 1. From Figure 1 we can see five clear regions. In Table 1 are summarized

the results of this stability analysis. Using the values for A;, Ay and Az for (1,2) and (3,1) modes,

the phase orbits for o1/Ps = .006, and o2/Py = -.072 (region I}, = -.03 (region II), = -.0012

(region III), = .03 (region IV), = .072 (region V), were calculated. These are shown in Figure 2.

Note that only Figures 2 (b), (¢) and (d) have heteroclinic orbits in the physically meaningful

region, that is, when 0 < P; < Py. In Figure 2 (II) are shown the heteroclinic orbits connecting

the saddle points (ii), in Figure 2 (III) are shown the heteroclinic orbits connecting the saddle

points (iii), and in Figure 2 (IV) are shown the heteroclinic orbits connecting the saddle points (i).

Following Kovacic and Wiggins, we transform equations (9) by following transformation:

(21)

r = 2P1 sin@l, Yy = 2P1 COS@l, J = Pz, 6= 92 ) (22)
and then we get
, 3 ; 3 4 . 3 1 .
' = —§(A1 — 24 + Ag)y® ~ §(A1 - §A2 + Az)yz® — Z(AZ — A3)Jy — 5(‘71 — o)y +45
3 2 3 4 1 1
y = §(A1 - -§A2 + A3)1:3 + g(Al - -:-3-A2 + A3)y2x + Z(A2 —343)Jz + 5(0'1 —o9)z + ¢¥,
1 3 3 1
¢ = —=(Ay—3A43)z° — (A — A3)y® — ZA3J — -0z +¢,
8 8 4 2
J o= g (23)
where
1 . 1 @9 ysinf 1
T = —— 9 — ————————— — —
g 2lem +2 2 5¢ T
1 1 @2 zsinf 1
v o— _Z S £ Teduuet
g 5Q@1cosf— 5 5T 5¢ Y
f oo L Qe
2./20—z2 -2
g/ = -;—Ql(y cosf — zsinf) + %Qz cosfy/2J — 32 — y2 —cJ, (24)
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Equations (23) have the general form

x, p—d -6_R — l a: ! == — %
- dy 2¢® ¥ = Oz
0K 0K
! — Il ] hafntel
J = 50 cJ, [} + 37
(25)
where
K = I—(() + K1,
Ky = —1/209J+ _34 +3/16 A S a4t (2 a2 +1/16 4y | z*
0 - o2 32 1 2 32 3]Y 32 3 32 1 2
+ (=3/16 A3 —3/16 A) + 1/4 A2) v’z + (—1/4 01 + 1/409) 2° + (=1/401 + 1/409) &
+ (3/8A3—3/8A42)Jy* + (3/8 43 — 1/8 Ay) 22T — 3/8 A3J?
Ki = -1/2Q:sin(8)v/2J — 22 —y2 — 1/2Q z cos(d) — 1/2 Q1y sin(6). (26)

Summary and Conclusion

Non-linear dynamics of an externally excited thin rectangular plate is studied by global per-
turbation technique. The method of averaging is used to transform the modal equations to four
first-order differential equations representing the slow-time evolution of amplitudes and phases of
harmonic motions of the two modes. The system of equations is transformed by a sequence of
canonical transformations to the system of appropriate form, to which Melnikov method can be
applied. Bifurcation sets in parameter space are identified to find phase portraits of unperturbed
system. The geometric structures of the unperturbed system show orbits homoclinic and hetero-
clinic to fixed points.
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Figure 1. Bifurcation sets in (02/F2o — 01/P2) plane.
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Figure 2. Solution orbits in (P}, Q) phase plane for o1/Pz = .006, and ga/Pa = -.072 (1),
= -.03 (II), -.0012 (III), = .03 (IV), = .072 (V).



