• Title/Summary/Keyword: Global Updating

Search Result 71, Processing Time 0.027 seconds

Integrated Optimal Design of Hybrid Structural Control System using Multi-Stage Goal Programming Technique (다단계 목표계획법을 이용한 복합구조제어시스템의 통합최적설계)

  • 박관순;고현무;옥승용
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.5
    • /
    • pp.93-102
    • /
    • 2003
  • An optimal design method for hybrid structural control system of building structures subject to earthquake excitation is presented in this paper. Designing a hybrid structural control system may be defined as a process that optimizes the capacities and configuration of passive and active control systems as well as structural members. The optimal design proceeds by formulating the optimization problem via a multi-stage goal programming technique and, then, by finding reasonable solution to the optimization problem by means of a goal-updating genetic algorithm. In the multi-stage goal programming, design targets(or goals) are at first selected too correspond too several stages and the objective function is th n defined as the sum of the normalized distances between these design goals and each of the physical values, that is, the inter-story drifts and the capacities of the control system. Finally, the goal-updating genetic algorithm searches for optimal solutions satisfying each stage of design goals and, if a solution exists, the levels of design goals are consecutively updated to approach the global optimal solution closest too the higher level of desired goals. The process of the integrated optimization design is illustrated by a numerical simulation of a nine-story building structure subject to earthquake excitation. The effectiveness of the proposed method is demonstrated by comparing the optimally designed results with those of a hybrid structural control system where structural members, passive and active control systems are uniformly distributed.

Calculation of eigenvalue and eigenvector derivatives with the improved Kron's substructuring method

  • Xia, Yong;Weng, Shun;Xu, You-Lin;Zhu, Hong-Ping
    • Structural Engineering and Mechanics
    • /
    • v.36 no.1
    • /
    • pp.37-55
    • /
    • 2010
  • For large-scale structures, the calculation of the eigensolution and the eigensensitivity is usually very time-consuming. This paper develops the Kron's substructuring method to compute the first-order derivatives of the eigenvalues and eigenvectors with respect to the structural parameters. The global structure is divided into several substructures. The eigensensitivity of the substructures are calculated via the conventional manner, and then assembled into the eigensensitivity of the global structure by performing some constraints on the derivative matrices of the substructures. With the proposed substructuring method, the eigenvalue and eigenvector derivatives with respect to an elemental parameter are computed within the substructure solely which contains the element, while the derivative matrices of all other substructures with respect to the parameter are zero. Consequently this can reduce the computation cost significantly. The proposed substructuring method is applied to the GARTEUR AG-11 frame and a highway bridge, which is proved to be computationally efficient and accurate for calculation of the eigensensitivity. The influence of the master modes and the division formations are also discussed.

Solving the Travelling Salesman Problem Using an Ant Colony System Algorithm

  • Zakir Hussain Ahmed;Majid Yousefikhoshbakht;Abdul Khader Jilani Saudagar;Shakir Khan
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.2
    • /
    • pp.55-64
    • /
    • 2023
  • The travelling salesman problem (TSP) is an important combinatorial optimization problem that is used in several engineering science branches and has drawn interest to several researchers and scientists. In this problem, a salesman from an arbitrary node, called the warehouse, starts moving and returns to the warehouse after visiting n clients, given that each client is visited only once. The objective in this problem is to find the route with the least cost to the salesman. In this study, a meta-based ant colony system algorithm (ACSA) is suggested to find solution to the TSP that does not use local pheromone update. This algorithm uses the global pheromone update and new heuristic information. Further, pheromone evaporation coefficients are used in search space of the problem as diversification. This modification allows the algorithm to escape local optimization points as much as possible. In addition, 3-opt local search is used as an intensification mechanism for more quality. The effectiveness of the suggested algorithm is assessed on a several standard problem instances. The results show the power of the suggested algorithm which could find quality solutions with a small gap, between obtained solution and optimal solution, of 1%. Additionally, the results in contrast with other algorithms show the appropriate quality of competitiveness of our proposed ACSA.

Internet Based Managing Design and Production Processes in a Distributed Global Environment (인터넷 기반 디자인 및 생산지원 분산환경 프로세스관리 기법 연구)

  • 박화규
    • The Journal of Information Systems
    • /
    • v.9 no.1
    • /
    • pp.217-234
    • /
    • 2000
  • This paper is to develop an information infrastructure to support managing process in design, planning, production, and quality control. Multi-media data set of design, product, and management information flow between organizational units of a virtual enterprise. The process is the logical organization of people, technology and practices incorporated into work activities to make an end product. The core of the infrastructure is the enterprise framework which coordinates activities and controls the process. The proposed framework manages collaborative activities across space and time, and between users and computers who share information in virtual community. It utilizes knowledge distributed through virtual community and fosters cooperation between organizations. The framework provides the following facilities; coordinating activities, sharing data and processes, visualizing multi-media data, customizing and updating processes, reusing data and processes. This paper covers design and manufacturing activities but our focus is initially targeted at design area.

  • PDF

Prediction of Distribution of Solid Volume Fraction in Semi-Solid Materials Based on Mixture Theory (혼합이론에 근거한 반용융 재료의 고상률 분포 예측)

  • 윤종훈;김낙수;임용택
    • Transactions of Materials Processing
    • /
    • v.8 no.4
    • /
    • pp.399-406
    • /
    • 1999
  • It is more appropriate to treat that the semi-solid mixture as a single phase material that obeys incompressibility in the global sense and to analyze the liquid flow only locally than the approach based on compressible yield criteria. In the present study, a numerical algorithm of updating the solid volume fraction based on mixture theory has been developed. Finite element analysis of simple upsetting was carried out using the proposed algorithm to investigate the degree of macro-segregation according to friction conditions and compressive strain rates under the isothermal condition. The simulation results were compared to experimental results available in reference to test the validity of the currently proposed algorithm. Since the comparison results show a good agreement it is construed that the proposed algorithm can contribute to the development of numerical analysis of determining the solid volume fraction semi-solid processing.

  • PDF

An Inextensible Wire-shaped Deformation Model for Catheter Simulation (카테터의 거동을 시뮬레이션 하기 위한 고정된 길이를 유지하는 실 형상의 변형체 모델)

  • Han, Hyehyun;Lee, Doo Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.8
    • /
    • pp.610-614
    • /
    • 2016
  • This paper proposes an inextensible wire-shaped deformation model to simulate catheter behavior. The wire-shaped model consists of serially-connected mass points and massless rigid links. Torsional springs and dampers are employed to accommodate bending. Deformation is computed by updating the rotation angles from the global coordinates while maintaining the fixed length condition. Equations of motion is derived from double pendulum motion. Spring constant is computed using strain energy and potential energy stored in a torsional spring to reflect material property. Simulation is conducted to show deformation of wire model while maintaining inextensibility condition and including material properties. The proposed method guarantees inextensible constraint in the catheter simulation.

A Road Database Update Method for Vehicle Routing Using GPS Cellular Phone (GPS 휴대폰을 이용한 차량경로용 도로망 데이터베이스 수정 방안)

  • Jang, Young-Kwan
    • Journal of the Korea Safety Management & Science
    • /
    • v.9 no.5
    • /
    • pp.97-101
    • /
    • 2007
  • As the use of vehicle route application and LBS(location based service) are fast grew, the importance of maintaining road network data is also increased. To maintain road data accuracy, we can collect road data by driving real roads with probe vehicle, or using digital image processing for the extraction of roads from aerial imagery. After compare the new road data to current database, we can update the road database, but that job is mostly time and money consuming or can be inaccurate. In this paper, an updating method of using GPS(global positioning system) enabled cell phone is proposed. By using GPS phone, we can update road database easily and sufficiently accurately.

Recent Advances in Structural Health Monitoring

  • Feng, Maria Q.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.6
    • /
    • pp.483-500
    • /
    • 2007
  • Emerging sensor-based structural health monitoring (SHM) technology can play an important role in inspecting and securing the safety of aging civil infrastructure, a worldwide problem. However, implementation of SHM in civil infrastructure faces a significant challenge due to the lack of suitable sensors and reliable methods for interpreting sensor data. This paper reviews recent efforts and advances made in addressing this challenge, with example sensor hardware and software developed in the author's research center. It is proposed to integrate real-time continuous monitoring using on structure sensors for global structural integrity evaluation with targeted NDE inspection for local damage assessment.

Unmanned Enforcement System for Illegal Parking and Stopping Vehicle using Adaptive Gaussian Mixture Model (적응적 가우시안 혼합 모델을 이용한 불법주정차 무인단속시스템)

  • Youm, Sungkwan;Shin, Seong-Yoon;Shin, Kwang-Seong;Pak, Sang-Hyon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.3
    • /
    • pp.396-402
    • /
    • 2021
  • As the world is trying to establish smart city, unmanned vehicle control systems are being widely used. This paper writes about an unmanned parking control system that uses an adaptive background image modeling method, suggesting the method of updating the background image, modeled with an adaptive Gaussian mixture model, in both global and local way according to the moving object. Specifically, this paper focuses on suggesting two methods; a method of minimizing the influence of a moving object on a background image and a method of accurately updating the background image by quickly removing afterimages of moving objects within the area of interest to be monitored. In this paper, through the implementation of the unmanned vehicle control system, we proved that the proposed system can quickly and accurately distinguish both moving and static objects such as vehicles from the background image.

Design of weighted federated learning framework based on local model validation

  • Kim, Jung-Jun;Kang, Jeon Seong;Chung, Hyun-Joon;Park, Byung-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.11
    • /
    • pp.13-18
    • /
    • 2022
  • In this paper, we proposed VW-FedAVG(Validation based Weighted FedAVG) which updates the global model by weighting according to performance verification from the models of each device participating in the training. The first method is designed to validate each local client model through validation dataset before updating the global model with a server side validation structure. The second is a client-side validation structure, which is designed in such a way that the validation data set is evenly distributed to each client and the global model is after validation. MNIST, CIFAR-10 is used, and the IID, Non-IID distribution for image classification obtained higher accuracy than previous studies.