• Title/Summary/Keyword: Global Satellite navigation system

Search Result 541, Processing Time 0.022 seconds

Obstacle Avoidance of GNSS Based AGVs Using Avoidance Vector (회피 벡터를 이용한 위성항법 기반 AGV의 장애물 회피)

  • Kang, Woo-Yong;Lee, Eun-Sung;Chun, Se-Bum;Heo, Moon-Beom;Nam, Gi-Wook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.6
    • /
    • pp.535-542
    • /
    • 2011
  • The Global Navigation Satellite System(GNSS) is being utilized in numerous applications. The research for autonomous guided vehicles(AGVs) using precise positioning of GNSS is in progress. GNSS based AGVs is useful for setting driving path. This AGV system is more efficient than the previous one. Escipecially, the obstacle is positioned the driving path. Previcious AGVs which follow marker or wires laid out on the road have to stop the front of obstacle. But GNSS based AGVS can continuously drive using obstacle avoidance. In this paper, we developed collision avoidance system for GNSS based AGV using laser scanner and collision avoidance path setting algorithm. And we analyzed the developed system.

A Novel Scheme for Code Tracking Bias Mitigation in Band-Limited Global Navigation Satellite Systems (위성 기반 측위 시스템에서의 부호 추적편이 완화 기법)

  • Yoo, Seung-Soo;Kim, Sang-Hun;Yoon, Seok-Ho;Song, Iich-Ho;Kim, Sun-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.10C
    • /
    • pp.1032-1041
    • /
    • 2007
  • The global navigation satellite system (GNSS), which is the core technique for the location based service, adopts the direct sequence/spread spectrum (DS/SS) as its modulation method. The success of a DS/SS system depends on the synchronization between the received and locally generated pseudo noise (PN) signals. As a step in the synchronization process, the tacking scheme performs fine adjustment to bring the phase difference between the two PN signals to zero. The most widely used tracking scheme is the delay locked loop with early minus late discriminator (EL-DLL). In the ideal case, the EL-DLL is the best estimator among various DLL. However, in the band-limited multipath environment, the EL-DLL has tracking bias. In this paper, the timing offset range of correlation function is divided into advanced offset range (AOR) and delayed offset range (DOR) centering around the correct synchronization time point. The tracking bias results from the following two reasons: symmetry distortion between correlation values in AOR and DOR, and mismatch between the time point corresponding to the maximum correlation value and the synchronization time point. The former and latter are named as the type I and type II tracking bias, respectively. In this paper, when the receiver has finite bandwidth in the presence of multipath signals, it is shown that the type II tracking bias becomes a more dominant error factor than the type I tracking bias, and the correlation values in AOR are not almost changed. Exploiting these characteristics, we propose a novel tracking bias mitigation scheme and demonstrate that the tracking accuracy of the proposed scheme is higher than that of the conventional scheme, both in the presence and absence of noise.

TLS (Total Least-Squares) within Gauss-Helmert Model: 3D Planar Fitting and Helmert Transformation of Geodetic Reference Frames (가우스-헬머트 모델 전최소제곱: 평면방정식과 측지좌표계 변환)

  • Bae, Tae-Suk;Hong, Chang-Ki;Lim, Soo-Hyeon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.4
    • /
    • pp.315-324
    • /
    • 2022
  • The conventional LESS (LEast-Squares Solution) is calculated under the assumption that there is no errors in independent variables. However, the coordinates of a point, either from traditional ground surveying such as slant distances, horizontal and/or vertical angles, or GNSS (Global Navigation Satellite System) positioning, cannot be determined independently (and the components are correlated each other). Therefore, the TLS (Total Least Squares) adjustment should be applied for all applications related to the coordinates. Many approaches were suggested in order to solve this problem, resulting in equivalent solutions except some restrictions. In this study, we calculated the normal vector of the 3D plane determined by the trace of the VLBI targets based on TLS within GHM (Gauss-Helmert Model). Another numerical test was conducted for the estimation of the Helmert transformation parameters. Since the errors in the horizontal components are very small compared to the radius of the circle, the final estimates are almost identical. However, the estimated variance components are significantly reduced as well as show a different characteristic depending on the target location. The Helmert transformation parameters are estimated more precisely compared to the conventional LESS case. Furthermore, the residuals can be predicted on both reference frames with much smaller magnitude (in absolute sense).

Study on for Simulation of GNSS Signal Generation (위성항법 신호생성 시뮬레이터 구현을 위한 신호생성 알고리즘 연구)

  • Kim, Tae-Hee;Lee, Jae-Eun;Lee, Sang-Uk;Kim, Jae-Hoon;Hwang, Dong-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.11
    • /
    • pp.1148-1156
    • /
    • 2009
  • ETRI has developed GNSS digitized IF signal generator for providing test and evaluation environment for various software level application and navigation algorithm in Global Navigation Satellite System(GNSS). GNSS digitized IF signal generator provides two main capabilities, GPS and Galileo raw data generation and digitized IF signal generation. GNSS digitized IF signal generator consists of five main modules which are GNSS Satellite Orbit Simulation Module, Navigation Message Generation Module, Error Generation Module, GNSS IF Signal Generation Module, and Message & Signal Steering Module. We verified the signal generated by the GNSS signal generation algorithm using software receiver for generation of signal brother to real GNSS signal.

Analysis on GNSS Spoofing signal effects using SDR receiver (SDR 수신기를 이용한 위성항법 기만신호 효과도 분석)

  • Cho, Ji-haeng
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.2
    • /
    • pp.97-102
    • /
    • 2019
  • The GNSS(Global Navigation Satellite System) provides important information such as Position and Navigation, Timing(PNT) to various weapon systems in the military. as a result, applications that employ satellite navigation systems are increasing. therefore, a number of studies have been conducted to deceive the weapon systems that employ GNSS. GNSS spoofing denotes the transmission of counterfeit GNSS-like signals with the intention to produce a false position and time within the victim receiver. In order to deceive the victim receiver, spoofing signal should be synchronized with GNSS signal in doppler frequency and code phase, etc. In this paper, Civilian GPS L1 C/A spoofing signals have been evaluated and analyzed by SDR receiver.

Space Service Volume Augmented with Korean Positioning System at Geosynchronous Orbit

  • Kim, Gimin;Park, Chandeok;Lim, Deok Won
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.4
    • /
    • pp.327-336
    • /
    • 2020
  • This study presents signal availability of inter-operable global navigation satellite system (multi-GNSS) combined with future Korean Positioning System (KPS), specifically at geosynchronous orbit (GSO). The orbit of KPS, which is currently under conceptual feasibility study, is first introduced, and the grid points for evaluating space service volume (SSV) at GSO are generated. The signal observabilities are evaluated geometrically between those grid points and KPS/GNSS satellites. Then, analyzed are the visibility averaged over time/space and outage time to not access one or four signals. The reduction of maximum outage time induced by KPS are presented with different maximum off-boresight angles depending on L1/E1/B1 and L5/L3/E5a/B2 frequencies. Our numerical analysis shows that the SSV of multi-GNSS combined with KPS provides up to 7 additional signals and could provide continuous observation time (zero outage time) of more than four GNSS or KPS signals for 3.20-14.83% of SSV grid points at GSO. Especially at GSO above North/South America and Atlantic region, the introduction of KPS reduces the outage duration by up to 63 minutes with L1/E1/B1 frequency.

Korean Wide Area Differential Global Positioning System Development Status and Preliminary Test Results

  • Yun, Ho;Kee, Chang-Don;Kim, Do-Yoon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.3
    • /
    • pp.274-282
    • /
    • 2011
  • This paper is focused on dynamic modeling and control system design as well as vision based collision avoidance for multi-rotor unmanned aerial vehicles (UAVs). Multi-rotor UAVs are defined as rotary-winged UAVs with multiple rotors. These multi-rotor UAVs can be utilized in various military situations such as surveillance and reconnaissance. They can also be used for obtaining visual information from steep terrains or disaster sites. In this paper, a quad-rotor model is introduced as well as its control system, which is designed based on a proportional-integral-derivative controller and vision-based collision avoidance control system. Additionally, in order for a UAV to navigate safely in areas such as buildings and offices with a number of obstacles, there must be a collision avoidance algorithm installed in the UAV's hardware, which should include the detection of obstacles, avoidance maneuvering, etc. In this paper, the optical flow method, one of the vision-based collision avoidance techniques, is introduced, and multi-rotor UAV's collision avoidance simulations are described in various virtual environments in order to demonstrate its avoidance performance.

Validation of Geostationary Earth Orbit Satellite Ephemeris Generated from Satellite Laser Ranging

  • Oh, Hyungjik;Park, Eunseo;Lim, Hyung-Chul;Lee, Sang-Ryool;Choi, Jae-Dong;Park, Chandeok
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.227-233
    • /
    • 2018
  • This study presents the generation and accuracy assessment of predicted orbital ephemeris based on satellite laser ranging (SLR) for geostationary Earth orbit (GEO) satellites. Two GEO satellites are considered: GEO-Korea Multi-Purpose Satellite (KOMPSAT)-2B (GK-2B) for simulational validation and Compass-G1 for real-world quality assessment. SLR-based orbit determination (OD) is proactively performed to generate orbital ephemeris. The length and the gap of the predicted orbital ephemeris were set by considering the consolidated prediction format (CPF). The resultant predicted ephemeris of GK-2B is directly compared with a pre-specified true orbit to show 17.461 m and 23.978 m, in 3D root-mean-square (RMS) position error and maximum position error for one day, respectively. The predicted ephemeris of Compass-G1 is overlapped with the Global Navigation Satellite System (GNSS) final orbit from the GeoForschungsZentrum (GFZ) analysis center (AC) to yield 36.760 m in 3D RMS position differences. It is also compared with the CPF orbit from the International Laser Ranging Service (ILRS) to present 109.888 m in 3D RMS position differences. These results imply that SLR-based orbital ephemeris can be an alternative candidate for improving the accuracy of commonly used radar-based orbital ephemeris for GEO satellites.

Performance Enhancement of Emergency Rescue System using Surface Correlation Technology

  • Shin, Beomju;Lee, Jung Ho;Shin, Donghyun;Yu, Changsu;Kyung, Hankyeol;Lee, Taikjin
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.3
    • /
    • pp.183-189
    • /
    • 2020
  • In emergency rescue situations, the localization accuracy of the rescue requestor is a very important factor in determining the success or failure of the rescue. Indoors where Global Navigation Satellite System (GNSS) is not operated, there is no choice but to use Wi-Fi or LTE signals. However, the performance of the current emergency rescue system utilizing those RF signals is exceedingly low. In this study, the effectiveness of the surface correlation technology using the accumulated signal pattern of RF signals was verified in relation to the emergency localization technology. To validate the proposed system, we configured and tested an emergency rescue scenario in multi-floors building. When the emergency rescue was requested, it was confirmed that the initial localization error was large owing to the short length of the accumulated signal pattern. However, the localization error decreased over time, which eventually led to the accurate location information being delivered to the rescuer.

Geometric Sensitivity Index for the GNSS Using Inner Products of Line of Sight Vectors

  • Won, Dae Hee;Ahn, Jongsun;Sung, Sangkyung;Lee, Chulsoo;Bu, Sungchun;Jang, Jeagyu;Lee, Young Jae
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.3
    • /
    • pp.437-444
    • /
    • 2015
  • Satellite selection and exclusion techniques have been applied to the global navigation satellite system (GNSS) with the aim of achieving a balance between navigational performance and computational efficiency. Conventional approaches to satellite selection based on the best dilution of precision (DOP) are excessively computational and complicated. This paper proposes a new method that applies a geometric sensitivity index of individual GNSS satellites. The sensitivity index is derived using the inner product of the line of sight (LOS) vector of each satellite. First, the LOS vector is computed, which accounts for the geometry between the satellite and user positions. Second, the inner product of each pair of LOS vectors is calculated, which indicates the proximities of the satellites to one another. The proximity can be determined according to the sensitivity of each satellite. A post-processing test was conducted to verify the reliability of the proposed method. The proposed index and the results of a conventional approach that measures the dilution of precision (DOP) were compared. The test results demonstrate that the proposed index produces results that are within 96% of those of the conventional approach and reduces the computational burden. This index can be utilized to estimate the sensitivity of individual satellites, obtaining a navigation solution. Therefore, the proposed index applies to satellite selection and exclusion as well as to the sensitivity analyses of multiple GNSS applications.